3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 特征提取 特征(语言学) 深度学习 聚类分析 面子(社会学概念) 图像分割 人工神经网络 计算机视觉 哲学 社会学 语言学 社会科学
作者
Xiaojie Xu,Chang Liu,Youyi Zheng
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2336-2348 被引量:167
标识
DOI:10.1109/tvcg.2018.2839685
摘要

In this paper, we present a novel approach for 3D dental model segmentation via deep Convolutional Neural Networks (CNNs). Traditional geometry-based methods tend to receive undesirable results due to the complex appearance of human teeth (e.g., missing/rotten teeth, feature-less regions, crowding teeth, extra medical attachments, etc.). Furthermore, labeling of individual tooth is hardly enabled in traditional tooth segmentation methods. To address these issues, we propose to learn a generic and robust segmentation model by exploiting deep Neural Networks, namely NNs. The segmentation task is achieved by labeling each mesh face. We extract a set of geometry features as face feature representations. In the training step, the network is fed with those features, and produces a probability vector, of which each element indicates the probability a face belonging to the corresponding model part. To this end, we extensively experiment with various network structures, and eventually arrive at a 2-level hierarchical CNNs structure for tooth segmentation: one for teeth-gingiva labeling and the other for inter-teeth labeling. Further, we propose a novel boundary-aware tooth simplification method to significantly improve efficiency in the stage of feature extraction. After CNNs prediction, we do graph-based label optimization and further refine the boundary with an improved version of fuzzy clustering. The accuracy of our mesh labeling method exceeds that of the state-of-art geometry-based methods, reaching 99.06 percent measured by area which is directly applicable in orthodontic CAD systems. It is also robust to any possible foreign matters on model surface, e.g., air bubbles, dental accessories, and many more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待八宝粥完成签到,获得积分10
1秒前
123完成签到 ,获得积分20
1秒前
3秒前
丘比特应助急急吉吉采纳,获得10
3秒前
rr发布了新的文献求助10
5秒前
小乐儿~完成签到,获得积分10
7秒前
wucl1990发布了新的文献求助10
8秒前
Zer完成签到,获得积分10
8秒前
9秒前
胖头鱼小王完成签到,获得积分10
11秒前
简让完成签到 ,获得积分10
16秒前
啦啦啦发布了新的文献求助10
16秒前
17秒前
优雅松鼠完成签到,获得积分10
22秒前
Phosphene应助lijingwen采纳,获得10
22秒前
26秒前
筱兮完成签到,获得积分10
26秒前
24号甜冰茶完成签到,获得积分10
27秒前
yyyyyqy完成签到 ,获得积分10
27秒前
28秒前
wuhuhu完成签到,获得积分10
29秒前
29秒前
李玟发布了新的文献求助10
30秒前
所所应助luyuran采纳,获得30
32秒前
32秒前
33秒前
33秒前
34秒前
lx完成签到,获得积分10
34秒前
34秒前
35秒前
Zzzzxs发布了新的文献求助10
35秒前
啦啦啦完成签到 ,获得积分10
37秒前
英姑应助SiDi采纳,获得10
37秒前
琪琪完成签到,获得积分10
40秒前
orixero应助漂亮的鸡采纳,获得10
41秒前
43秒前
李玟完成签到,获得积分10
43秒前
大橙子完成签到,获得积分10
44秒前
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884