MoG-QSM: Model-based Generative Adversarial Deep Learning Network for Quantitative Susceptibility Mapping.

定量磁化率图 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 反问题 数学 磁共振成像 医学 放射科 数学分析
作者
Ruimin Feng,Shuo Chen,David Simchi-Levi,Baofeng Yang,Wen-Ying Li,Yuting Shi,Ming Zhang,Chunlei Liu,Yuyao Zhang,Jie Zhuang,Hongjiang Wei
出处
期刊:Cornell University - arXiv
摘要

Quantitative susceptibility mapping (QSM) estimates the underlying tissue magnetic susceptibility from the MRI gradient-echo phase signal and has demonstrated great potential in quantifying tissue susceptibility in various brain diseases. However, the intrinsic ill-posed inverse problem relating the tissue phase to the underlying susceptibility distribution affects the accuracy for quantifying tissue susceptibility. The resulting susceptibility map is known to suffer from noise amplification and streaking artifacts. To address these challenges, we propose a model-based framework that permeates benefits from generative adversarial networks to train a regularization term that contains prior information to constrain the solution of the inverse problem, referred to as MoG-QSM. A residual network leveraging a mixture of least-squares (LS) GAN and the L1 cost was trained as the generator to learn the prior information in susceptibility maps. A multilayer convolutional neural network was jointly trained to discriminate the quality of output images. MoG-QSM generates highly accurate susceptibility maps from single orientation phase maps. Quantitative evaluation parameters were compared with recently developed deep learning QSM methods and the results showed MoG-QSM achieves the best performance. Furthermore, a higher intraclass correlation coefficient (ICC) was obtained from MoG-QSM maps of the traveling subjects, demonstrating its potential for future applications, such as large cohorts of multi-center studies. MoG-QSM is also helpful for reliable longitudinal measurement of susceptibility time courses, enabling more precise monitoring for metal ion accumulation in neurodegenerative disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rose发布了新的文献求助10
刚刚
1秒前
酷波er应助哇撒采纳,获得10
3秒前
香蕉觅云应助呆萌的不凡采纳,获得10
4秒前
KK关闭了KK文献求助
5秒前
健壮诗桃发布了新的文献求助200
9秒前
9秒前
Thien发布了新的文献求助10
11秒前
Lucas应助鲸落采纳,获得10
13秒前
14秒前
呆萌的不凡完成签到,获得积分20
15秒前
四卯完成签到,获得积分10
15秒前
Hello应助ccq采纳,获得10
16秒前
LLL应助77采纳,获得10
19秒前
NexusExplorer应助有缘采纳,获得30
21秒前
啦啦完成签到,获得积分10
21秒前
丘比特应助lurongjun采纳,获得50
23秒前
25秒前
bkagyin应助starwan采纳,获得10
26秒前
Polymer72应助phy采纳,获得10
27秒前
ccq发布了新的文献求助10
28秒前
28秒前
30秒前
niumm发布了新的文献求助10
33秒前
wang发布了新的文献求助10
33秒前
34秒前
有缘发布了新的文献求助30
36秒前
och3完成签到,获得积分10
37秒前
zhr发布了新的文献求助10
38秒前
背后城发布了新的文献求助10
38秒前
李小伟完成签到,获得积分10
40秒前
Owen应助难过的树叶采纳,获得10
40秒前
情怀应助糖果果采纳,获得30
40秒前
我是老大应助syh采纳,获得10
42秒前
NexusExplorer应助VIncent采纳,获得30
42秒前
大个应助zzj1904采纳,获得10
43秒前
谢谢你好心人完成签到,获得积分10
43秒前
43秒前
有缘完成签到,获得积分10
45秒前
wang完成签到,获得积分20
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352928
求助须知:如何正确求助?哪些是违规求助? 2977777
关于积分的说明 8681926
捐赠科研通 2658892
什么是DOI,文献DOI怎么找? 1455972
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884