骨质疏松症
医学
生物信息学
骨重建
重症监护医学
病理
内科学
生物
作者
Babapelumi Adejuyigbe,Julie Kallini,Daniel Chiou,Jennifer R. Kallini
标识
DOI:10.3390/ijms241914583
摘要
Osteoporosis is a major public health concern affecting millions of people worldwide and resulting in significant economic costs. The condition is characterized by changes in bone homeostasis, which lead to reduced bone mass, impaired bone quality, and an increased risk of fractures. The pathophysiology of osteoporosis is complex and multifactorial, involving imbalances in hormones, cytokines, and growth factors. Understanding the cellular and molecular mechanisms underlying osteoporosis is essential for appropriate diagnosis and management of the condition. This paper provides a comprehensive review of the normal cellular and molecular mechanisms of bone homeostasis, followed by an in-depth discussion of the proposed pathophysiology of osteoporosis through the osteoimmunological, gut microbiome, and cellular senescence models. Furthermore, the diagnostic tools used to assess osteoporosis, including bone mineral density measurements, biochemical markers of bone turnover, and diagnostic imaging modalities, are also discussed. Finally, both the current pharmacological and non-pharmacological treatment algorithms and management options for osteoporosis, including an exploration of the management of osteoporotic fragility fractures, are highlighted. This review reveals the need for further research to fully elucidate the molecular mechanisms underlying the condition and to develop more effective therapeutic strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI