神经形态工程学
材料科学
异质结
光电子学
带隙
响应度
钙钛矿(结构)
光电探测器
人工智能
计算机科学
人工神经网络
化学
结晶学
作者
Kangmin Leng,Zhiqiang Guo,Junming Chen,Yao Fu,Ruihua Ma,Xuechao Yu,Li Wang,Qisheng Wang
标识
DOI:10.1021/acsami.3c17935
摘要
Neuromorphic light sensors with analogue-domain image processing capability hold promise for overcoming the energy efficiency limitations and latency of von Neumann architecture-based vision chips. Recently, metal halide perovskites, with strong light–matter interaction, long carrier diffusion length, and exceptional photoelectric conversion efficiencies, exhibit reconfigurable photoresponsivity due to their intrinsic ion migration effect, which is expected to advance the development of visual sensors. However, suffering from a large bandgap, it is challenging to achieve highly tunable responsivity simultaneously with a wide-spectrum response in perovskites, which will significantly enhance the image recognition accuracy through the machine learning algorithm. Herein, we demonstrate a broadband neuromorphic visual sensor from visible (Vis) to near-infrared (NIR) by coupling all-inorganic metal halide perovskites (CsPbBr3) with narrow-bandgap lead sulfide (PbS). The PbS/CsPbBr3 heterostructure is composed of high-quality single crystals of PbS and CsPbBr3. Interestingly, the ion migration of CsPbBr3 with the implementation of an electric field induces the energy band dynamic bending at the interface of the PbS/CsPbBr3 heterojunction, leading to reversible, multilevel, and linearly tunable photoresponsivity. Furthermore, the reconfigurable and broadband photoresponse in the PbS/CsPbBr3 heterojunction allows convolutional neuronal network processing for pattern recognition and edge enhancements from the Vis to the NIR waveband, suggesting the great potential of the PbS/CsPbBr3 heterostructure in artificial intelligent vision sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI