材料科学
钙钛矿(结构)
范德瓦尔斯力
Crystal(编程语言)
热稳定性
噻吩
光伏系统
晶体结构
结晶学
纳米技术
化学工程
分子
有机化学
化学
生物
计算机科学
工程类
生态学
程序设计语言
作者
Zhiyuan Xu,Di Lu,Xiyue Dong,Mingqian Chen,Qiang Fu,Yongsheng Liu
标识
DOI:10.1002/adma.202105083
摘要
2D Dion-Jacobson (DJ) perovskites have become an emerging photovoltaic material with excellent structure and environmental stability due to their lacking van der Waals gaps relative to 2D Ruddlesden-Popper perovskites. Here, a fused-thiophene-based spacer, namely TTDMAI, is successfully developed for 2D DJ perovskite solar cells. It is found that the DJ perovskite using TTDMA spacer with extended π-conjugation length exhibits high film quality, large crystal size and preferred crystal vertical orientation induced by the large crystal nuclei in precursor solution, resulting in lower trap density, reduced exciton binding energy and oriented charge transport. As a result, the optimized 2D DJ perovskite device based on TTDMA (nominal n = 4) delivers a champion PCE up to 18.82%. Importantly, the unencapsulated device based on TTDMA can sustain average 99% of their original efficiency after being stored in N2 for 4400 h (over 6 months). Moreover, light, thermal, environmental and operational stabilities are also significantly improved in comparison with their 3D counterparts.
科研通智能强力驱动
Strongly Powered by AbleSci AI