3D Shape-Based Myocardial Infarction Prediction Using Point Cloud Classification Networks

点云 计算机科学 云计算 点(几何) 人工智能 心肌梗塞 心脏病学 医学 数学 几何学 操作系统
作者
Marcel Beetz,Yilong Yang,Abhirup Banerjee,Lei Li,Vicente Grau
标识
DOI:10.1109/embc40787.2023.10340878
摘要

Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases with associated clinical decision-making typically based on single-valued imaging biomarkers. However, such metrics only approximate the complex 3D structure and physiology of the heart and hence hinder a better understanding and prediction of MI outcomes. In this work, we investigate the utility of complete 3D cardiac shapes in the form of point clouds for an improved detection of MI events. To this end, we propose a fully automatic multi-step pipeline consisting of a 3D cardiac surface reconstruction step followed by a point cloud classification network. Our method utilizes recent advances in geometric deep learning on point clouds to enable direct and efficient multi-scale learning on high-resolution surface models of the cardiac anatomy. We evaluate our approach on 1068 UK Biobank subjects for the tasks of prevalent MI detection and incident MI prediction and find improvements of ∼13% and ∼5% respectively over clinical benchmarks. Furthermore, we analyze the role of each ventricle and cardiac phase for 3D shape-based MI detection and conduct a visual analysis of the morphological and physiological patterns typically associated with MI outcomes.Clinical relevance— The presented approach enables the fast and fully automatic pathology-specific analysis of full 3D cardiac shapes. It can thus be employed as a real-time diagnostic tool in clinical practice to discover and visualize more intricate biomarkers than currently used single-valued metrics and improve predictive accuracy of myocardial infarction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡到人间煮饭时完成签到,获得积分10
刚刚
芒琪发布了新的文献求助10
刚刚
求助应助吱吱采纳,获得10
1秒前
1秒前
科研通AI5应助华111采纳,获得10
1秒前
运气贼好的熊猫完成签到 ,获得积分10
1秒前
77发布了新的文献求助10
2秒前
在水一方应助冷傲板栗采纳,获得10
2秒前
不吃了完成签到 ,获得积分10
2秒前
3秒前
失眠的平凡完成签到,获得积分10
3秒前
在水一方应助忧郁以彤采纳,获得10
3秒前
西瓜发布了新的文献求助10
4秒前
所所应助阔达的无心采纳,获得10
4秒前
徐炎发布了新的文献求助10
4秒前
4秒前
Owen应助柒月采纳,获得10
5秒前
传奇3应助睡到人间煮饭时采纳,获得10
5秒前
5秒前
大脸怪发布了新的文献求助10
6秒前
NexusExplorer应助瑞瑞采纳,获得10
6秒前
疏狂发布了新的文献求助20
6秒前
6秒前
玉米完成签到,获得积分10
7秒前
搬砖工人完成签到,获得积分10
7秒前
李健的小迷弟应助Helen采纳,获得10
7秒前
Jasper应助lucifer0922采纳,获得10
7秒前
lrl完成签到,获得积分10
7秒前
负责乌冬面完成签到,获得积分10
8秒前
爱听歌的依秋完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
迟大猫应助射天狼采纳,获得10
10秒前
科研通AI5应助和211采纳,获得10
10秒前
李健应助HZY采纳,获得10
10秒前
科研通AI5应助西瓜采纳,获得10
11秒前
anny.white发布了新的文献求助10
11秒前
科研通AI5应助徐丹枫采纳,获得10
11秒前
李子维完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581022
求助须知:如何正确求助?哪些是违规求助? 3150661
关于积分的说明 9483675
捐赠科研通 2852321
什么是DOI,文献DOI怎么找? 1568107
邀请新用户注册赠送积分活动 734388
科研通“疑难数据库(出版商)”最低求助积分说明 720670