Double embedding and bidirectional sentiment dependence detector for aspect sentiment triplet extraction

计算机科学 情绪分析 嵌入 粒度 任务(项目管理) 文字嵌入 人工智能 自然语言处理 词(群论) 性格(数学) 表(数据库) 理论计算机科学 数据挖掘 语言学 数学 哲学 几何学 管理 经济 操作系统
作者
Dawei Dai,Tao Chen,Shuyin Xia,Guoyin Wang,Zizhong Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:253: 109506-109506 被引量:9
标识
DOI:10.1016/j.knosys.2022.109506
摘要

Aspect sentiment triplet extraction (ASTE) is a popular subtask related to aspect-based sentiment analysis (ABSA). It extracts aspects and their associated opinion expressions and sentiment polarities from comment sentences. Previous studies have proposed a multitask learning framework that jointly extracts aspect and opinion terms and treats the sentiment analysis task as a table-filling problem. Although the multitask learning framework solves the problem of identifying overlapping opinion triples, the entire model cannot explicitly simulate interactions between aspects and opinions. Therefore, we propose a sentiment-dependence detector based on a dual-table structure that starts from two directions, aspect-to-opinion and opinion-to-aspect, to generate two sentiment-dependence tables dominated by two types of information. These complementary directions allow our framework to explicitly consider interactions between aspects and opinions and better identify triples. Moreover, we use a double-embedding mechanism—character-level and word-vector embeddings—in the model for triplet extraction that enables it to represent contexts at different granularity levels and explore high-level semantic features. To the best of our knowledge, this study presents the first bidirectional long short-term memory (BiLSTM) model based on double embedding used to perform ASTE tasks. Finally, our analysis shows that our proposed bidirectional sentiment-dependence detector and double-embedding BiLSTM model achieve more significant results than the baseline model for triples with multiple identical aspects or opinions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cjh发布了新的文献求助10
1秒前
5秒前
鲑鱼完成签到 ,获得积分10
17秒前
TT完成签到 ,获得积分10
18秒前
19秒前
superspace完成签到 ,获得积分10
20秒前
22秒前
27秒前
sonicker完成签到 ,获得积分10
30秒前
英吉利25发布了新的文献求助30
33秒前
fang完成签到,获得积分0
35秒前
虚心青梦完成签到 ,获得积分10
45秒前
安静严青完成签到 ,获得积分10
51秒前
lorentzh完成签到,获得积分10
56秒前
月儿完成签到 ,获得积分10
57秒前
xixilulixiu完成签到 ,获得积分10
59秒前
Bear完成签到 ,获得积分10
1分钟前
baa完成签到,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
调皮平蓝完成签到,获得积分10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
猪鼓励完成签到,获得积分10
1分钟前
大大怪完成签到,获得积分10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
mrconli完成签到,获得积分10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
1分钟前
热心乞完成签到 ,获得积分10
1分钟前
1分钟前
落寞的幻竹完成签到,获得积分10
1分钟前
1分钟前
ldr888完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449747
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550