Double embedding and bidirectional sentiment dependence detector for aspect sentiment triplet extraction

计算机科学 情绪分析 嵌入 粒度 任务(项目管理) 文字嵌入 人工智能 自然语言处理 词(群论) 性格(数学) 表(数据库) 理论计算机科学 数据挖掘 语言学 数学 哲学 几何学 管理 经济 操作系统
作者
Dawei Dai,Tao Chen,Shuyin Xia,Guoyin Wang,Zizhong Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:253: 109506-109506 被引量:9
标识
DOI:10.1016/j.knosys.2022.109506
摘要

Aspect sentiment triplet extraction (ASTE) is a popular subtask related to aspect-based sentiment analysis (ABSA). It extracts aspects and their associated opinion expressions and sentiment polarities from comment sentences. Previous studies have proposed a multitask learning framework that jointly extracts aspect and opinion terms and treats the sentiment analysis task as a table-filling problem. Although the multitask learning framework solves the problem of identifying overlapping opinion triples, the entire model cannot explicitly simulate interactions between aspects and opinions. Therefore, we propose a sentiment-dependence detector based on a dual-table structure that starts from two directions, aspect-to-opinion and opinion-to-aspect, to generate two sentiment-dependence tables dominated by two types of information. These complementary directions allow our framework to explicitly consider interactions between aspects and opinions and better identify triples. Moreover, we use a double-embedding mechanism—character-level and word-vector embeddings—in the model for triplet extraction that enables it to represent contexts at different granularity levels and explore high-level semantic features. To the best of our knowledge, this study presents the first bidirectional long short-term memory (BiLSTM) model based on double embedding used to perform ASTE tasks. Finally, our analysis shows that our proposed bidirectional sentiment-dependence detector and double-embedding BiLSTM model achieve more significant results than the baseline model for triples with multiple identical aspects or opinions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勾勾1991完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助大气亦巧采纳,获得10
1秒前
2秒前
汉堡包应助wade采纳,获得10
2秒前
张学习完成签到,获得积分10
3秒前
蔡军完成签到 ,获得积分10
3秒前
白桃战士完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
4秒前
端庄的冬天完成签到,获得积分10
4秒前
小栩完成签到 ,获得积分10
5秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
5秒前
曲沛萍发布了新的文献求助10
5秒前
宁阿霜发布了新的文献求助20
6秒前
SOO应助研友_5476B5采纳,获得10
6秒前
夏风完成签到 ,获得积分10
7秒前
隐形曼青应助萧小五采纳,获得10
7秒前
Jiawei完成签到,获得积分10
7秒前
nieanicole发布了新的文献求助10
7秒前
小橙同学完成签到 ,获得积分10
7秒前
Ava应助yukinade采纳,获得10
8秒前
爆米花应助hahhh7采纳,获得10
8秒前
8秒前
深情安青应助leodu采纳,获得10
9秒前
9秒前
10秒前
开心完成签到,获得积分10
11秒前
Never stall完成签到,获得积分10
11秒前
11秒前
11秒前
甜美的雁开完成签到,获得积分20
12秒前
猫归四海关注了科研通微信公众号
12秒前
CipherSage应助vinecho采纳,获得30
12秒前
12秒前
大气亦巧完成签到,获得积分10
13秒前
ding应助2025tangtang采纳,获得10
13秒前
13秒前
一心完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653