Artificial intelligence in nursing and midwifery: A systematic review

奇纳 检查表 梅德林 护理部 系统回顾 医疗保健 课程 人工智能应用 医学 心理学 人工智能 医学教育 计算机科学 经济增长 经济 认知心理学 法学 心理干预 教育学 政治学
作者
Siobhán O′Connor,Yongyang Yan,Friederike J.S. Thilo,Heike Felzmann,Dawn Dowding,Jung Jae Lee
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:32 (13-14): 2951-2968 被引量:56
标识
DOI:10.1111/jocn.16478
摘要

Artificial Intelligence (AI) techniques are being applied in nursing and midwifery to improve decision-making, patient care and service delivery. However, an understanding of the real-world applications of AI across all domains of both professions is limited.To synthesise literature on AI in nursing and midwifery.CINAHL, Embase, PubMed and Scopus were searched using relevant terms. Titles, abstracts and full texts were screened against eligibility criteria. Data were extracted, analysed, and findings were presented in a descriptive summary. The PRISMA checklist guided the review conduct and reporting.One hundred and forty articles were included. Nurses' and midwives' involvement in AI varied, with some taking an active role in testing, using or evaluating AI-based technologies; however, many studies did not include either profession. AI was mainly applied in clinical practice to direct patient care (n = 115, 82.14%), with fewer studies focusing on administration and management (n = 21, 15.00%), or education (n = 4, 2.85%). Benefits reported were primarily potential as most studies trained and tested AI algorithms. Only a handful (n = 8, 7.14%) reported actual benefits when AI techniques were applied in real-world settings. Risks and limitations included poor quality datasets that could introduce bias, the need for clinical interpretation of AI-based results, privacy and trust issues, and inadequate AI expertise among the professions.Digital health datasets should be put in place to support the testing, use, and evaluation of AI in nursing and midwifery. Curricula need to be developed to educate the professions about AI, so they can lead and participate in these digital initiatives in healthcare.Adult, paediatric, mental health and learning disability nurses, along with midwives should have a more active role in rigorous, interdisciplinary research evaluating AI-based technologies in professional practice to determine their clinical efficacy as well as their ethical, legal and social implications in healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DW发布了新的文献求助10
刚刚
谦让的慕凝完成签到 ,获得积分10
1秒前
悦耳的机器猫完成签到,获得积分10
1秒前
3秒前
淡定的疾发布了新的文献求助10
3秒前
3秒前
恋空完成签到 ,获得积分10
3秒前
从容飞凤发布了新的文献求助10
3秒前
小李发布了新的文献求助10
3秒前
疯狂的绮山完成签到,获得积分10
5秒前
Wang发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
5秒前
7秒前
siriuslee99完成签到,获得积分10
7秒前
糖糖科研顺利呀完成签到,获得积分10
7秒前
伊蕾娜完成签到 ,获得积分10
7秒前
7秒前
li完成签到,获得积分10
7秒前
李健的粉丝团团长应助DW采纳,获得10
8秒前
Ryan完成签到,获得积分10
8秒前
华仔应助杨震采纳,获得200
8秒前
李博士完成签到,获得积分10
8秒前
scq完成签到 ,获得积分10
8秒前
赘婿应助hdd采纳,获得50
9秒前
苻醉蓝完成签到,获得积分10
9秒前
三桥完成签到,获得积分10
9秒前
奋斗的大白菜完成签到,获得积分10
9秒前
10秒前
乐乐发布了新的文献求助10
10秒前
stone完成签到,获得积分10
10秒前
怕黑的含桃完成签到,获得积分10
10秒前
159完成签到,获得积分10
11秒前
幸运星完成签到,获得积分10
11秒前
东十八完成签到 ,获得积分10
12秒前
Sekiro发布了新的文献求助10
12秒前
学茶小白完成签到,获得积分10
13秒前
羊皮大哈发布了新的文献求助10
13秒前
好困应助John采纳,获得10
14秒前
1111111111111完成签到,获得积分10
14秒前
王灿灿完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443