光探测
材料科学
响应度
光电流
异质结
紫外线
暗电流
光电子学
可见光谱
量子点
光电探测器
载流子
作者
Xinhong Zhao,Yu Tao,Jixiang Dong,Yongchu Fang,Xiaoxian Song,Zaoxue Yan
标识
DOI:10.1021/acsami.2c11202
摘要
Wearable, portable, and biocompatible optoelectronic devices made of all-green and abundant materials and fabricated by low-temperature solution method are the key point in the development of next generation of intelligent optoelectronics. However, this is usually limited by the weaknesses of mono-component materials, such as non-adjustable photoresponse region, high carrier recombination rate, high signal-to-noise ratio, as well as the weak mechanical flexibility of bulk films. In this work, the Cs3Cu2I5/ZnO heterostructure flexible photodetectors were constructed by a low-temperature solution method combined with spin-coating technique. The heterostructure combines the low dark current and strong deep ultraviolet absorption of Cs3Cu2I5 quantum dots with the high carrier mobility of ZnO quantum dots as well as the efficient charge separation of the vertical p-n junction, to improve the photodetection performance. The heterostructure shows enhanced light/dark current ratio and ultraviolet-to-visible rejection ratios. Under an illumination of 280 nm light, an optical detectivity as high as 1.26 × 1011 Jones was obtained; the optical responsivity and response time are much better than those of control devices. After 300 times of 180° bending cycles, the photocurrent had no obvious change. The results demonstrate that the Cs3Cu2I5/ZnO heterostructure has great potential in wearable and portable visible-blind ultraviolet optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI