Self-powered health monitoring with ultrafast response and recovery enabled by nanostructured silicon moisture-electric generator

湿度 材料科学 可穿戴计算机 灵敏度(控制系统) 电压 纳米技术 超短脉冲 光电子学 电气工程 计算机科学 电子工程 嵌入式系统 工程类 光学 物理 热力学 激光器
作者
Yuhang Song,Chang Shu,Zheheng Song,Xuelian Zeng,Xianrong Yuan,Yanan Wang,Jiaming Xu,Qianyue Feng,Tao Song,Beibei Shao,Yusheng Wang,Baoquan Sun
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:468: 143797-143797 被引量:12
标识
DOI:10.1016/j.cej.2023.143797
摘要

Humidity sensors have been widely applied in health management, including respiration monitoring and non-contact sensing for human–machine interaction. Nevertheless, most existing monitoring systems hinging on moisture-sensitive materials require an additional external power source. In addition, the inferior sensitivity and long response/recovery time of the sensors still hinder their desirable healthcare applications. Here, we developed a self-powered humidity sensor built on the moisture-directly triggered electricity generation (MEG) effect, where silicon nanowire arrays (SiNWs) function as the sensing element, exhibiting an ultrafast response to humidity changes with high-level sensitivity. Humidity gradients induce charge directional transport in SiNWs nanochannels, directly actuating electricity signals generation without any additional power units for sensing. The enlarged surface area, oriented nanochannel structure, and superior electrical conductivity of SiNWs facilitate a robust dependence of the output voltage on humidity, enabling the sensor with quick response/recovery (∼0.10 s/∼0.17 s), ultra-high sensitivity, and broad detection range (3.94 mV/1% for 50–95% RH/1.13 mV/1% for 0–50% RH). Furthermore, we designed a smart respiratory monitoring system that can extract various respiration patterns and distinguish different language commands. We also constructed a non-contact human–machine interface leveraging the SiNWs sensor that can effectively disrupt virus propagation and bacterial infection. The elaborate self-powered humidity sensor proposed in our work could as well potentially be exploited for establishing wearable and integrated health monitoring platforms in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听语说发布了新的文献求助10
刚刚
费凝海完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
头发很多发布了新的文献求助10
1秒前
liuce0307发布了新的文献求助10
1秒前
白月当归完成签到,获得积分10
1秒前
lenon完成签到,获得积分10
2秒前
summer发布了新的文献求助10
2秒前
传奇3应助健壮的听寒采纳,获得10
2秒前
羞涩的渊思应助zzzz采纳,获得10
2秒前
苹果发布了新的文献求助10
3秒前
炒菜别忘记放颜完成签到 ,获得积分10
3秒前
常青完成签到,获得积分10
4秒前
4秒前
静仰星空完成签到,获得积分10
4秒前
Ghiocel完成签到,获得积分10
4秒前
物欲横流发布了新的文献求助10
4秒前
Carroe完成签到,获得积分10
5秒前
5秒前
科研通AI5应助PG采纳,获得30
5秒前
hp571发布了新的文献求助10
6秒前
寒冷无色完成签到,获得积分10
6秒前
珂尔维特完成签到,获得积分10
6秒前
JM发布了新的文献求助10
6秒前
LUKW给LUKW的求助进行了留言
7秒前
大美美完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
罗YF完成签到,获得积分10
7秒前
syx发布了新的文献求助10
8秒前
Ava应助绵绵饲养手册采纳,获得30
8秒前
三七四十三完成签到,获得积分10
8秒前
liuce0307完成签到,获得积分10
8秒前
9秒前
9秒前
苏杉杉发布了新的文献求助10
9秒前
summer完成签到,获得积分10
10秒前
gzsy完成签到 ,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650