A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals

人工智能 计算机科学 支持向量机 模式识别(心理学) 过度拟合 卷积神经网络 分类器(UML) 反向传播 人工神经网络 机器学习
作者
Huijun Wu,Qing Huang,Daqing Wang,Lifu Gao
出处
期刊:Journal of Electromyography and Kinesiology [Elsevier]
卷期号:42: 136-142 被引量:81
标识
DOI:10.1016/j.jelekin.2018.07.005
摘要

The commonly used classifiers for pattern recognition of human motion, like backpropagation neural network (BPNN) and support vector machine (SVM), usually implement the classification by extracting some hand-crafted features from the human biological signals. These features generally require the domain knowledge for researchers to be designed and take a long time to be tested and selected for high classification performance. In contrast, convolutional neural network (CNN), which has been widely applied to computer vision, can learn to automatically extract features from the training data by means of convolution and subsampling, but CNN training usually requires large sample data and has the overfitting problem. On the other hand, SVM has good generalization ability and can solve the small sample problem. Therefore, we proposed a CNN-SVM combined model to make use of their advantages. In this paper, we detected 4-channel mechanomyography (MMG) signals from the thigh muscles and fed them in the form of time series signals to the CNN-SVM combined model for the pattern recognition of knee motion. Compared with the common classifier performing the classification with hand-crafted features, the CNN-SVM combined model could automatically extract features using CNN, and better improved the generalization ability of CNN and the classification accuracy by means of combining the SVM. This study would provide reference for human motion recognition using other time series signals and further expand the application fields of CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dawn发布了新的文献求助30
刚刚
刚刚
提拉米苏发布了新的文献求助10
1秒前
胡图图发布了新的文献求助10
1秒前
英俊的铭应助调皮寄瑶采纳,获得10
2秒前
ykssss完成签到,获得积分10
4秒前
依萱完成签到,获得积分10
4秒前
FashionBoy应助活泼忆丹采纳,获得10
5秒前
彳亍1117应助吉乐园采纳,获得10
5秒前
丘比特应助啦啦啦采纳,获得10
8秒前
8秒前
Yziii应助飘着的鬼采纳,获得10
11秒前
12秒前
红烧鼠蹄发布了新的文献求助30
12秒前
叫我小鲁就好关注了科研通微信公众号
12秒前
李健应助Arjun采纳,获得10
12秒前
浓浓完成签到 ,获得积分10
13秒前
君莫笑发布了新的文献求助10
14秒前
nihaoxiaoai完成签到,获得积分10
15秒前
16秒前
海蟹完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
面包完成签到,获得积分10
19秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
学习通完成签到,获得积分10
21秒前
日常卖命完成签到 ,获得积分10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
21秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得30
22秒前
22秒前
22秒前
yoozii发布了新的文献求助10
23秒前
共享精神应助limin采纳,获得30
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870