气体分离
金属有机骨架
化学
分离(统计)
多孔性
吸附
化学工程
色谱法
有机化学
膜
计算机科学
生物化学
机器学习
工程类
作者
Rui‐Biao Lin,Shengchang Xiang,Huabin Xing,Wei Zhou,Banglin Chen
标识
DOI:10.1016/j.ccr.2017.09.027
摘要
As a new generation of porous materials, metal–organic frameworks (MOFs, also known as porous coordination polymers) have shown great promise for gas separation and purification because of their unique pore structures and surfaces for their differential recognition of small gas molecules. In this review article, we summarize our ongoing research endeavors to explore and discover microporous MOFs for gas separation and purification. We have developed several approaches to systematically tune the pores and to immobilize functional sites, including (1) the primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters, M2(CO2)4 (M = Cu2+, Zn2+…), with two types of organic dicarboxylic acid and pillar bidentate linkers; (2) microporous mixed-metal–organic frameworks (M′MOFs) through the metallo-ligands, and (3) microporous MOFs with dual functionalities. Such efforts have enabled us to make some breakthroughs on microporous MOFs for gas separation and purification, as demonstrated in the gas chromatographic separation of hexane isomers, kinetic D2/H2 separation, acetylene/ethylene separation, carbon dioxide capture, C2H2/CO2 and C3H4/C3H6 separation. Our group is one of the first groups who have envisioned the practical promise of microporous MOFs for the industrial gas separation and examined their separation capacities and efficiency using the fixed-bed adsorption and/or breakthrough experiments. Some of the very important and representative examples of these microporous MOFs for diverse gas separation and purification are highlighted in this review.
科研通智能强力驱动
Strongly Powered by AbleSci AI