亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved CEEMDAN–wavelet transform de-noising method and its application in well logging noise reduction

希尔伯特-黄变换 小波变换 小波 噪音(视频) 计算机科学 残余物 降噪 离散小波变换 模式识别(心理学) 算法 人工智能 数据挖掘 计算机视觉 图像(数学) 滤波器(信号处理)
作者
Jingxia Zhang,Yinghai Guo,Yu-Lin Shen,Difei Zhao,Mi Li
出处
期刊:Journal of Geophysics and Engineering [Oxford University Press]
卷期号:15 (3): 775-787 被引量:35
标识
DOI:10.1088/1742-2140/aaa076
摘要

The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)–wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k–1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k–1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
所所应助有人采纳,获得10
32秒前
52秒前
52秒前
55秒前
59秒前
我是老大应助有人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
李爱国应助阿巴阿巴采纳,获得10
1分钟前
sunaijia应助有人采纳,获得10
1分钟前
1分钟前
斯文败类应助爱听歌笑寒采纳,获得10
2分钟前
风中的夕阳完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
有人给调皮黑猫的求助进行了留言
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003402
关于积分的说明 8809183
捐赠科研通 2690204
什么是DOI,文献DOI怎么找? 1473526
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674550