材料科学
氧化还原
介孔材料
碳纤维
化学工程
电解质
电化学
电催化剂
硫黄
大孔隙
锂(药物)
电化学动力学
纳米技术
无机化学
电极
催化作用
化学
有机化学
复合数
复合材料
冶金
医学
物理化学
内分泌学
工程类
作者
Xiaoyang Liu,Jingbo Zhang,Kangli Liu,Shijie Zhang,Rouhan Hou,Xiaoyi Hu,Peng Zhang,Guosheng Shao
标识
DOI:10.1016/j.jmst.2023.07.004
摘要
The practical applications of lithium-sulfur (Li-S) batteries are hampered by the sluggish redox kinetics and polysulfides shuttle in the cyclic process, which leads to a series of problems including the loss of active materials and poor cycling efficiency. In this paper, the pore structures of carbon nanosheets based electrocatalysts were precisely controlled by regulating the content of water-soluble KCl template. The relationship between pore structures and Li-S electrochemical behavior was studied, which demonstrates a key influence of pore structure in polysulfides phase conversions. In the liquid-sloid redox reaction of polysulfides, the micropores and small mesopores (d < 20 nm) exhibited little impact, while the mesopores (d > 20 nm) and macropores played a decisive role. As a typical exhibition, the nickel-embedded carbon nanosheets (Ni-CNS) with a high content of large mesopores and macropores can aid Li-S batteries in exhibiting stable cycling performance (760.1 mAh g−1 at 1 C after 300 cycles) and superior rate capacity (847.8 mAh g−1 at 2 C). Furthermore, even with high sulfur loading (8 mg cm−2) and low electrolyte (E/S is around 6 µL mg−1), the high area capacity of 7.7 mAh cm−2 at 0.05 C could be achieved. This work can provide a guideline for the design of the pore structure of carbon-based electrocatalysts toward high-efficiency sulfur species redox reactions, and afford a general, controllable, and simple approach to constructing high performance Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI