深海热液喷口
深海
生产力
γ蛋白杆菌
化学合成
热液循环
环境化学
碳纤维
海洋学
碳循环
海底扩张
生态学
微生物种群生物学
溶解有机碳
总有机碳
基因组
生物
化学
地质学
生态系统
细菌
古生物学
经济
基因
复合材料
16S核糖体RNA
材料科学
宏观经济学
生物化学
复合数
作者
Amanda M. Achberger,Rose M. Jones,John W. Jamieson,Charles P. Holmes,Florence Schubotz,Nicolette R. Meyer,Anne Dekas,Sarah Moriarty,Eoghan P. Reeves,Alex Manthey,Jonas Brünjes,Daniel J. Fornari,Margaret K. Tivey,Brandy M. Toner,Jason B. Sylvan
出处
期刊:Nature microbiology
日期:2024-01-29
卷期号:9 (3): 657-668
被引量:11
标识
DOI:10.1038/s41564-024-01599-9
摘要
Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin–Benson–Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor. Radiolabel-based bioassays, nanoSIMs, metagenomics and lipidomics conducted on samples collected along the East Pacific Rise show higher than expected chemosynthetic microbial activity on inactive vents.
科研通智能强力驱动
Strongly Powered by AbleSci AI