支气管肺发育不良
内分泌学
羊水
内科学
子痫前期
血管内皮生长因子
医学
肺
血管内皮生长因子A
妊娠期
可溶性fms样酪氨酸激酶-1
胎儿
怀孕
生物
胎盘生长因子
胎龄
遗传学
血管内皮生长因子受体
作者
Jen‐Ruey Tang,S. Ananth Karumanchi,Gregory Seedorf,Neil Markham,Steven H. Abman
出处
期刊:American Journal of Physiology-lung Cellular and Molecular Physiology
[American Physiological Society]
日期:2011-10-15
卷期号:302 (1): L36-L46
被引量:135
标识
DOI:10.1152/ajplung.00294.2011
摘要
Epidemiological studies have shown that maternal preeclampsia (PE) increases the risk of bronchopulmonary dysplasia (BPD), but the underlying mechanism is unknown. Soluble vascular endothelial growth factor receptor-1 (soluble VEGFR1, known as soluble fms-like tyrosine kinase 1, or sFlt-1), an endogenous antagonist of vascular endothelial growth factor (VEGF), is markedly elevated in amniotic fluid and maternal blood in PE. Therefore, we hypothesized that antenatal exposure to excess sFlt-1 disrupts lung development through impaired VEGF signaling in utero, providing a mechanistic link between PE and BPD. To determine whether increased sFlt-1 in amniotic fluid is sufficient to cause sustained abnormalities of lung structure during infancy, sFlt-1 or saline was injected into amniotic sacs of pregnant Sprague-Dawley rats at 20 days of gestation (term, 22 days). After birth, pups were observed through 14 days of age for study. We found that intra-amniotic sFlt-1 treatment decreased alveolar number, reduced pulmonary vessel density, and caused right and left ventricular hypertrophy in 14-day-old rats. In addition, intra-amniotic sFlt-1 treatment suppressed activation of lung VEGF receptor-2 and increased apoptosis in endothelial and mesenchymal cells in the newborn lung. We conclude that exposure to excess sFlt-1 in amniotic fluid during late gestation causes sustained reductions in alveolarization and pulmonary vascular growth during infancy, accompanied by biventricular hypertrophy suggesting pulmonary and systemic hypertension. We speculate that impaired VEGF signaling in utero due to exposure of high amniotic fluid levels of sFlt-1 in PE disrupts lung growth and contributes to the increased risk of BPD in infants born to mothers with PE.
科研通智能强力驱动
Strongly Powered by AbleSci AI