Deep Graph Clustering via Dual Correlation Reduction

判别式 计算机科学 聚类分析 平滑的 人工智能 图形 编码 相关性 模式识别(心理学) 数据挖掘 理论计算机科学 数学 基因 几何学 生物化学 计算机视觉 化学
作者
Yue Liu,Wenxuan Tu,Sihang Zhou,Xinwang Liu,Linxuan Song,Xihong Yang,En Zhu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (7): 7603-7611 被引量:129
标识
DOI:10.1609/aaai.v36i7.20726
摘要

Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years. However, we observe that, in the process of node encoding, existing methods suffer from representation collapse which tends to map all data into the same representation. Consequently, the discriminative capability of the node representation is limited, leading to unsatisfied clustering performance. To address this issue, we propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) by reducing information correlation in a dual manner. Specifically, in our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in the dual-level, thus improving the discriminative capability of the resulting features. Moreover, in order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation regularization term to enable the network to gain long-distance information with the shallow network structure. Extensive experimental results on six benchmark datasets demonstrate the effectiveness of the proposed DCRN against the existing state-of-the-art methods. The code of DCRN is available at https://github.com/yueliu1999/DCRN and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
medlive2020发布了新的文献求助10
刚刚
刚刚
FengyaoWang完成签到,获得积分10
1秒前
1秒前
Azure发布了新的文献求助10
1秒前
1秒前
kiki发布了新的文献求助10
2秒前
2秒前
aobacae发布了新的文献求助10
2秒前
5High_0发布了新的文献求助10
2秒前
哎呀妈呀完成签到,获得积分10
2秒前
2秒前
秋向秋发布了新的文献求助10
3秒前
3秒前
茕穹完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
星辰大海应助隐形之玉采纳,获得10
5秒前
独特的沛凝完成签到,获得积分10
5秒前
5秒前
XJTU_jyh完成签到,获得积分10
5秒前
5秒前
苗条晓亦发布了新的文献求助10
5秒前
6秒前
首席或雪月完成签到,获得积分10
7秒前
在水一方应助Lcrainy采纳,获得10
7秒前
无辜的尔烟完成签到,获得积分10
7秒前
若朴祭司发布了新的文献求助10
8秒前
李超发布了新的文献求助10
9秒前
SenioriousZ发布了新的文献求助10
9秒前
zho应助zhang采纳,获得10
9秒前
长情霸完成签到,获得积分10
9秒前
脑洞疼应助junjunjunjun采纳,获得10
9秒前
Sunny完成签到,获得积分10
9秒前
9秒前
9秒前
风中音响发布了新的文献求助30
10秒前
我是老大应助EP采纳,获得10
11秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717148
求助须知:如何正确求助?哪些是违规求助? 3263674
关于积分的说明 9931528
捐赠科研通 2977792
什么是DOI,文献DOI怎么找? 1632988
邀请新用户注册赠送积分活动 774799
科研通“疑难数据库(出版商)”最低求助积分说明 745197