Multi-Faceted Route Representation Learning for Travel Time Estimation

代表(政治) 计算机科学 旅行时间 估计 时间旅行 运输工程 人工智能 工程类 系统工程 政治 政治学 法学
作者
Tianxi Liao,Liangzhe Han,Yi Xu,Tongyu Zhu,Leilei Sun,Bowen Du
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 11782-11793 被引量:2
标识
DOI:10.1109/tits.2024.3371071
摘要

Travel time estimation (TTE) is a fundamental and challenging problem for navigation and travel planning. Though many efforts have been devoted to this task, most of the previous research has focused on extracting useful features of the routes to improve the estimation accuracy. In our opinion, the key issue of TTE is how to handle the rich spatiotemporal information underlying a route and how to model the multi-faceted factors that affect travel time. Along this line, we propose a multi-faceted route representation learning framework that divides a route into three sequences: a trajectory sequence consists of GPS coordinates to describe spatial information, an attribute sequence to encode the features of each road segment, and a semantic sequence consists of the IDs of road segments to capture the context information of routes. Then, we design a sequential learning module and transformer encoder to get the representations of three sequences for each route respectively. Finally, we fuse the multi-faceted route representations together, and provide a self-supervised learning module to improve the generalization of final representation. Experiments on two real-world datasets demonstrate that our method could provide more accurate travel time estimation than baselines, and all the multi-faceted route representations contribute to the improvement of estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勾勾1991完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助大气亦巧采纳,获得10
2秒前
3秒前
汉堡包应助wade采纳,获得10
3秒前
张学习完成签到,获得积分10
4秒前
蔡军完成签到 ,获得积分10
4秒前
白桃战士完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
5秒前
端庄的冬天完成签到,获得积分10
5秒前
小栩完成签到 ,获得积分10
6秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
6秒前
曲沛萍发布了新的文献求助10
6秒前
宁阿霜发布了新的文献求助20
7秒前
SOO应助研友_5476B5采纳,获得10
7秒前
夏风完成签到 ,获得积分10
8秒前
隐形曼青应助萧小五采纳,获得10
8秒前
Jiawei完成签到,获得积分10
8秒前
nieanicole发布了新的文献求助10
8秒前
小橙同学完成签到 ,获得积分10
8秒前
Ava应助yukinade采纳,获得10
9秒前
爆米花应助hahhh7采纳,获得10
9秒前
9秒前
深情安青应助leodu采纳,获得10
10秒前
10秒前
11秒前
开心完成签到,获得积分10
12秒前
Never stall完成签到,获得积分10
12秒前
12秒前
12秒前
甜美的雁开完成签到,获得积分20
13秒前
猫归四海关注了科研通微信公众号
13秒前
CipherSage应助vinecho采纳,获得30
13秒前
13秒前
大气亦巧完成签到,获得积分10
14秒前
ding应助2025tangtang采纳,获得10
14秒前
14秒前
一心完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653