控制理论(社会学)
人工神经网络
强化学习
控制器(灌溉)
计算机科学
趋同(经济学)
移动机器人
非线性系统
自适应控制
李雅普诺夫函数
机器人
数学
控制(管理)
人工智能
量子力学
生物
经济增长
物理
经济
农学
作者
Shu Li,Liang Ding,Haibo Gao,Yan‐Jun Liu,Nan Li,Zongquan Deng
出处
期刊:IEEE transactions on systems, man, and cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2020-11-01
卷期号:50 (11): 4171-4182
被引量:26
标识
DOI:10.1109/tsmc.2018.2870724
摘要
In this paper, a reinforcement learning-based adaptive control algorithm is proposed to solve the tracking problem of a discrete-time (DT) nonlinear state and input time delayed system of the wheeled mobile robot (WMR). With the typical model of the WMR transformed into an affine nonlinear DT system, a delay matrix function and appropriate Lyapunov-Krasovskii functionals are introduced to overcome the problems caused by the state and input time delays, respectively. Furthermore, with the approximation of the radial basis function neural networks (NNs), the adaptive controller, the critic NN, and action NN adaptive laws are defined to guarantee the uniform ultimate boundedness of all signals in the WMR system, and the tracking errors convergence to a small compact set to zero. Two examples of simulation are given to illustrate the effectiveness of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI