计算机科学
分类
数据科学
范围(计算机科学)
领域(数学)
数字图书馆
数据提取
人工智能
作者
Seyedeh Neelufar Payrovnaziri,Zhaoyi Chen,Pablo Rengifo-Moreno,Tim Miller,Jian-Guo Bian,Jonathan H. Chen,Xiuwen Liu,Zhe He
标识
DOI:10.1093/jamia/ocaa053
摘要
Objective To conduct a systematic scoping review of explainable artificial intelligence (XAI) models that use real-world electronic health record data, categorize these techniques according to different biomedical applications, identify gaps of current studies, and suggest future research directions. Materials and methods We searched MEDLINE, IEEE Xplore, and the Association for Computing Machinery (ACM) Digital Library to identify relevant papers published between January 1, 2009 and May 1, 2019. We summarized these studies based on the year of publication, prediction tasks, machine learning algorithm, dataset(s) used to build the models, the scope, category, and evaluation of the XAI methods. We further assessed the reproducibility of the studies in terms of the availability of data and code and discussed open issues and challenges. Results Forty-two articles were included in this review. We reported the research trend and most-studied diseases. We grouped XAI methods into 5 categories: knowledge distillation and rule extraction (N = 13), intrinsically interpretable models (N = 9), data dimensionality reduction (N = 8), attention mechanism (N = 7), and feature interaction and importance (N = 5). Discussion XAI evaluation is an open issue that requires a deeper focus in the case of medical applications. We also discuss the importance of reproducibility of research work in this field, as well as the challenges and opportunities of XAI from 2 medical professionals' point of view. Conclusion Based on our review, we found that XAI evaluation in medicine has not been adequately and formally practiced. Reproducibility remains a critical concern. Ample opportunities exist to advance XAI research in medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI