PINN-FFHT: A physics-informed neural network for solving fluid flow and heat transfer problems without simulation data

计算机科学 偏微分方程 趋同(经济学) 流量(数学) 人工神经网络 传热 流体力学 层流 应用数学 人工智能 数学 物理 机械 数学分析 经济增长 经济
作者
Qingyang Zhang,Xiaowei Guo,Xinhai Chen,Chuanfu Xu,Jie Liu
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:33 (12) 被引量:6
标识
DOI:10.1142/s0129183122501662
摘要

In recent years, physics-informed neural networks (PINNs) have come to the foreground in many disciplines as a new way to solve partial differential equations. Compared with traditional discrete methods and data-driven surrogate models, PINNs can learn the solutions of partial differential equations without relying on tedious mesh generation and simulation data. In this paper, an original neural network structure PINN-FFHT based on PINNs is devised to solve the fluid flow and heat transfer problems. PINN-FFHT can simultaneously predict the flow field and take into consideration the influence of flow on the temperature field to solve the energy equation. A flexible and friendly boundary condition (BC) enforcement method and a dynamic strategy that can adaptively balance the loss term of velocity and that of temperature are proposed for training PINN-FFHT, serving to accelerate the convergence and improve the accuracy of predicted results. Three cases are predicted to validate the capabilities of the network, including the laminar flow with the Dirichlet BCs in heat transfer, respectively, under the Cartesian and the cylindrical coordinate systems, and the thermally fully developed flow with the Neumann BCs in heat transfer. Results show that PINN-FFHT is faster in convergence speed and higher in accuracy than traditional PINN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
shotgod发布了新的文献求助10
2秒前
ling玲完成签到,获得积分10
2秒前
奔奔发布了新的文献求助10
2秒前
SweepingMonk应助虚心盼晴采纳,获得10
3秒前
4秒前
汉堡包应助XXF采纳,获得10
4秒前
wzh完成签到,获得积分10
4秒前
海底落日完成签到,获得积分20
4秒前
5秒前
科研通AI5应助123采纳,获得30
5秒前
烟花应助pi采纳,获得10
6秒前
汉堡包应助小木木壮采纳,获得10
6秒前
6秒前
yl发布了新的文献求助30
6秒前
菲菲呀发布了新的文献求助10
6秒前
6秒前
科研通AI5应助禾泽采纳,获得30
7秒前
坚强的樱发布了新的文献求助10
7秒前
英俊梦槐完成签到,获得积分10
7秒前
123发布了新的文献求助10
8秒前
8秒前
8秒前
白泽发布了新的文献求助10
9秒前
一条贤与发布了新的文献求助20
9秒前
9秒前
英俊谷秋完成签到,获得积分10
9秒前
9秒前
通~发布了新的文献求助10
10秒前
所所应助火星探险采纳,获得10
10秒前
10秒前
Guoyeye完成签到,获得积分10
10秒前
11秒前
阿芙乐尔完成签到 ,获得积分10
11秒前
_呱_发布了新的文献求助30
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794