PINN-FFHT: A physics-informed neural network for solving fluid flow and heat transfer problems without simulation data

计算机科学 偏微分方程 趋同(经济学) 流量(数学) 人工神经网络 传热 流体力学 层流 应用数学 人工智能 数学 物理 机械 数学分析 经济增长 经济
作者
Qingyang Zhang,Xiaowei Guo,Xinhai Chen,Chuanfu Xu,Jie Liu
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:33 (12) 被引量:5
标识
DOI:10.1142/s0129183122501662
摘要

In recent years, physics-informed neural networks (PINNs) have come to the foreground in many disciplines as a new way to solve partial differential equations. Compared with traditional discrete methods and data-driven surrogate models, PINNs can learn the solutions of partial differential equations without relying on tedious mesh generation and simulation data. In this paper, an original neural network structure PINN-FFHT based on PINNs is devised to solve the fluid flow and heat transfer problems. PINN-FFHT can simultaneously predict the flow field and take into consideration the influence of flow on the temperature field to solve the energy equation. A flexible and friendly boundary condition (BC) enforcement method and a dynamic strategy that can adaptively balance the loss term of velocity and that of temperature are proposed for training PINN-FFHT, serving to accelerate the convergence and improve the accuracy of predicted results. Three cases are predicted to validate the capabilities of the network, including the laminar flow with the Dirichlet BCs in heat transfer, respectively, under the Cartesian and the cylindrical coordinate systems, and the thermally fully developed flow with the Neumann BCs in heat transfer. Results show that PINN-FFHT is faster in convergence speed and higher in accuracy than traditional PINN methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alias1234完成签到,获得积分10
2秒前
andrele发布了新的文献求助200
2秒前
tlx完成签到 ,获得积分10
2秒前
3秒前
3秒前
不配.应助普鲁斯特采纳,获得20
4秒前
5秒前
lumos发布了新的文献求助10
5秒前
5秒前
所所应助科研通管家采纳,获得10
6秒前
ShowMaker应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
ShowMaker应助科研通管家采纳,获得10
6秒前
xxxidgkris应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
ShowMaker应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
kilig发布了新的文献求助10
7秒前
7秒前
11应助科研通管家采纳,获得20
7秒前
guan完成签到,获得积分10
8秒前
9秒前
sekidesu发布了新的文献求助30
9秒前
小小发布了新的文献求助10
10秒前
尹雪儿完成签到,获得积分20
10秒前
慕青应助ZKJ采纳,获得30
11秒前
Bryce完成签到,获得积分20
11秒前
zzmy完成签到,获得积分10
11秒前
12秒前
清皓完成签到,获得积分10
12秒前
welch发布了新的文献求助10
13秒前
爆米花应助科研小白采纳,获得10
13秒前
SciGPT应助TJW采纳,获得10
13秒前
Bryce发布了新的文献求助10
14秒前
14秒前
15秒前
坦率的金鱼完成签到 ,获得积分20
15秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145857
求助须知:如何正确求助?哪些是违规求助? 2797330
关于积分的说明 7823473
捐赠科研通 2453611
什么是DOI,文献DOI怎么找? 1305792
科研通“疑难数据库(出版商)”最低求助积分说明 627571
版权声明 601491