SwinPA-Net: Swin Transformer-Based Multiscale Feature Pyramid Aggregation Network for Medical Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 棱锥(几何) 特征(语言学) 图像分割 尺度空间分割 水准点(测量) 计算机视觉 数学 语言学 哲学 几何学 大地测量学 地理
作者
Hao Du,Jiazheng Wang,Min Liu,Yaonan Wang,Erik Meijering
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5355-5366 被引量:37
标识
DOI:10.1109/tnnls.2022.3204090
摘要

The precise segmentation of medical images is one of the key challenges in pathology research and clinical practice. However, many medical image segmentation tasks have problems such as large differences between different types of lesions and similar shapes as well as colors between lesions and surrounding tissues, which seriously affects the improvement of segmentation accuracy. In this article, a novel method called Swin Pyramid Aggregation network (SwinPA-Net) is proposed by combining two designed modules with Swin Transformer to learn more powerful and robust features. The two modules, named dense multiplicative connection (DMC) module and local pyramid attention (LPA) module, are proposed to aggregate the multiscale context information of medical images. The DMC module cascades the multiscale semantic feature information through dense multiplicative feature fusion, which minimizes the interference of shallow background noise to improve the feature expression and solves the problem of excessive variation in lesion size and type. Moreover, the LPA module guides the network to focus on the region of interest by merging the global attention and the local attention, which helps to solve similar problems. The proposed network is evaluated on two public benchmark datasets for polyp segmentation task and skin lesion segmentation task as well as a clinical private dataset for laparoscopic image segmentation task. Compared with existing state-of-the-art (SOTA) methods, the SwinPA-Net achieves the most advanced performance and can outperform the second-best method on the mean Dice score by 1.68%, 0.8%, and 1.2% on the three tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定尔曼完成签到,获得积分10
1秒前
仿真小学生完成签到,获得积分10
2秒前
Thi发布了新的文献求助10
2秒前
2秒前
HMM完成签到,获得积分10
3秒前
拉磨的狗发布了新的文献求助10
3秒前
所所应助箱子采纳,获得10
3秒前
hihhjhh完成签到,获得积分10
3秒前
魏俏红发布了新的文献求助10
3秒前
zhiyucheng发布了新的文献求助10
4秒前
中意发布了新的文献求助10
5秒前
5秒前
5秒前
yiersan完成签到,获得积分10
6秒前
清秀大方嘤嘤猴完成签到,获得积分10
6秒前
magickou完成签到,获得积分10
6秒前
狗焕发布了新的文献求助10
7秒前
leo发布了新的文献求助10
7秒前
young发布了新的文献求助20
7秒前
小蘑菇应助Huck采纳,获得10
7秒前
nns完成签到,获得积分10
7秒前
sheng123发布了新的文献求助10
8秒前
SciGPT应助本草石之寒温采纳,获得10
8秒前
10秒前
qly应助PCEEN采纳,获得10
10秒前
10秒前
10秒前
Astronaut完成签到,获得积分10
11秒前
12秒前
12秒前
危机的井完成签到,获得积分10
12秒前
疯格完成签到,获得积分20
12秒前
12秒前
tttttt完成签到,获得积分10
12秒前
13秒前
13秒前
咕_发布了新的文献求助10
14秒前
肥羊七号发布了新的文献求助10
15秒前
三川发布了新的文献求助10
16秒前
万能图书馆应助Morgen采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296653
求助须知:如何正确求助?哪些是违规求助? 2932396
关于积分的说明 8456490
捐赠科研通 2604886
什么是DOI,文献DOI怎么找? 1422087
科研通“疑难数据库(出版商)”最低求助积分说明 661288
邀请新用户注册赠送积分活动 644356