亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SwinPA-Net: Swin Transformer-Based Multiscale Feature Pyramid Aggregation Network for Medical Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 棱锥(几何) 特征(语言学) 图像分割 尺度空间分割 水准点(测量) 计算机视觉 数学 语言学 哲学 几何学 大地测量学 地理
作者
Hao Du,Jiazheng Wang,Min Liu,Yaonan Wang,Erik Meijering
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5355-5366 被引量:53
标识
DOI:10.1109/tnnls.2022.3204090
摘要

The precise segmentation of medical images is one of the key challenges in pathology research and clinical practice. However, many medical image segmentation tasks have problems such as large differences between different types of lesions and similar shapes as well as colors between lesions and surrounding tissues, which seriously affects the improvement of segmentation accuracy. In this article, a novel method called Swin Pyramid Aggregation network (SwinPA-Net) is proposed by combining two designed modules with Swin Transformer to learn more powerful and robust features. The two modules, named dense multiplicative connection (DMC) module and local pyramid attention (LPA) module, are proposed to aggregate the multiscale context information of medical images. The DMC module cascades the multiscale semantic feature information through dense multiplicative feature fusion, which minimizes the interference of shallow background noise to improve the feature expression and solves the problem of excessive variation in lesion size and type. Moreover, the LPA module guides the network to focus on the region of interest by merging the global attention and the local attention, which helps to solve similar problems. The proposed network is evaluated on two public benchmark datasets for polyp segmentation task and skin lesion segmentation task as well as a clinical private dataset for laparoscopic image segmentation task. Compared with existing state-of-the-art (SOTA) methods, the SwinPA-Net achieves the most advanced performance and can outperform the second-best method on the mean Dice score by 1.68%, 0.8%, and 1.2% on the three tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjh完成签到,获得积分20
4秒前
7秒前
10秒前
13秒前
敏感的柜子完成签到 ,获得积分10
14秒前
cjh发布了新的文献求助10
16秒前
墨小杭完成签到,获得积分10
17秒前
语行完成签到 ,获得积分10
18秒前
连仁兄发布了新的文献求助10
19秒前
21秒前
26秒前
CodeCraft应助成太采纳,获得10
37秒前
40秒前
chenhui完成签到,获得积分10
40秒前
40秒前
45秒前
852应助白桃采纳,获得10
46秒前
Alex发布了新的文献求助10
47秒前
鲤鱼纸鹤发布了新的文献求助10
51秒前
gttlyb完成签到,获得积分10
53秒前
稚气满满完成签到 ,获得积分10
54秒前
斯寜应助鲤鱼纸鹤采纳,获得10
56秒前
57秒前
xueshanfeihu发布了新的文献求助10
59秒前
成太发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助Alex采纳,获得10
1分钟前
鲤鱼纸鹤完成签到,获得积分20
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
1分钟前
狮子座完成签到,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
狮子座发布了新的文献求助10
1分钟前
iwonderhao完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736611
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020021
捐赠科研通 2997241
什么是DOI,文献DOI怎么找? 1644486
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648