SwinPA-Net: Swin Transformer-Based Multiscale Feature Pyramid Aggregation Network for Medical Image Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 棱锥(几何) 特征(语言学) 图像分割 尺度空间分割 水准点(测量) 计算机视觉 数学 几何学 大地测量学 语言学 哲学 地理
作者
Hao Du,Jiazheng Wang,Min Liu,Yaonan Wang,Erik Meijering
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 5355-5366 被引量:57
标识
DOI:10.1109/tnnls.2022.3204090
摘要

The precise segmentation of medical images is one of the key challenges in pathology research and clinical practice. However, many medical image segmentation tasks have problems such as large differences between different types of lesions and similar shapes as well as colors between lesions and surrounding tissues, which seriously affects the improvement of segmentation accuracy. In this article, a novel method called Swin Pyramid Aggregation network (SwinPA-Net) is proposed by combining two designed modules with Swin Transformer to learn more powerful and robust features. The two modules, named dense multiplicative connection (DMC) module and local pyramid attention (LPA) module, are proposed to aggregate the multiscale context information of medical images. The DMC module cascades the multiscale semantic feature information through dense multiplicative feature fusion, which minimizes the interference of shallow background noise to improve the feature expression and solves the problem of excessive variation in lesion size and type. Moreover, the LPA module guides the network to focus on the region of interest by merging the global attention and the local attention, which helps to solve similar problems. The proposed network is evaluated on two public benchmark datasets for polyp segmentation task and skin lesion segmentation task as well as a clinical private dataset for laparoscopic image segmentation task. Compared with existing state-of-the-art (SOTA) methods, the SwinPA-Net achieves the most advanced performance and can outperform the second-best method on the mean Dice score by 1.68%, 0.8%, and 1.2% on the three tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲沛萍发布了新的文献求助10
刚刚
宁阿霜发布了新的文献求助20
1秒前
SOO应助研友_5476B5采纳,获得10
1秒前
夏风完成签到 ,获得积分10
2秒前
隐形曼青应助萧小五采纳,获得10
2秒前
Jiawei完成签到,获得积分10
2秒前
nieanicole发布了新的文献求助10
2秒前
小橙同学完成签到 ,获得积分10
2秒前
Ava应助yukinade采纳,获得10
3秒前
爆米花应助hahhh7采纳,获得10
3秒前
3秒前
深情安青应助leodu采纳,获得10
4秒前
4秒前
5秒前
开心完成签到,获得积分10
6秒前
Never stall完成签到,获得积分10
6秒前
6秒前
6秒前
甜美的雁开完成签到,获得积分20
7秒前
猫归四海关注了科研通微信公众号
7秒前
CipherSage应助vinecho采纳,获得30
7秒前
7秒前
大气亦巧完成签到,获得积分10
8秒前
ding应助2025tangtang采纳,获得10
8秒前
8秒前
一心完成签到,获得积分10
8秒前
8秒前
zzzx完成签到,获得积分10
9秒前
Abby发布了新的文献求助10
9秒前
wade发布了新的文献求助10
10秒前
开心岩完成签到,获得积分10
10秒前
10秒前
llwxx完成签到,获得积分10
10秒前
鹿鹿完成签到,获得积分10
10秒前
鹏程发布了新的文献求助10
10秒前
无情白羊发布了新的文献求助10
11秒前
郭慧梅完成签到,获得积分10
11秒前
Lv发布了新的文献求助10
12秒前
12秒前
打打应助czx采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653