A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation

全球导航卫星系统应用 惯性测量装置 人工神经网络 计算机科学 实时计算 环境科学 人工智能 全球定位系统 电信
作者
Rui Sun,Xiaotong Shang,Qi Cheng,Lei Jiang,Sheng Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086310-086310 被引量:4
标识
DOI:10.1088/1361-6501/ad4623
摘要

Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accuracy global navigation satellite systems (GNSS) based on carrier phase observations. The complexity of urban environments, however, means that GNSS signals are prone to reflection, diffraction and blockage by tall buildings, causing a degraded positioning accuracy. To address this issue, we have proposed a tightly coupled single-frequency multi-system single-epoch real-time kinematic (RTK) GNSS/inertial measurement unit (IMU) integration algorithm with the assistance of genetic algorithm back propagation based on low-cost IMU equipment for challenging urban navigation. Unlike the existing methods, which only use IMU corrections predicted by machine learning as a direct replacement of filtering corrections during GNSS outages, this algorithm introduces a more accurate and efficient IMU corrections prediction model, and it is underpinned by a dual-check GNSS assessment where the weights of GNSS measurements and neural network predictions are adaptively adjusted based on duration of the integrated system GNSS failure, assisting RTK/IMU integration in GNSS outages or malfunction conditions. Field tests demonstrate that the proposed prediction model results in a 68.69% and 69.03% improvement in the root mean square error in the 2D and 3D component when the training and testing data are collected under 150 s GNSS signal-blocked conditions. This corresponds to 52.43% and 51.27% for GNSS signals discontinuously blocked with 500 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未来发布了新的文献求助10
1秒前
淡淡的甜发布了新的文献求助10
3秒前
liyi发布了新的文献求助10
3秒前
4秒前
叶文腾完成签到,获得积分10
5秒前
6秒前
一只肥牛完成签到 ,获得积分10
7秒前
cuber发布了新的文献求助10
10秒前
11秒前
彭shuai发布了新的文献求助10
11秒前
丽丽发布了新的文献求助10
11秒前
12秒前
带回家反馈完成签到,获得积分20
12秒前
12秒前
SYLH应助ZYC007采纳,获得10
14秒前
15秒前
尼莫发布了新的文献求助10
16秒前
鲸落发布了新的文献求助10
16秒前
时安完成签到 ,获得积分10
16秒前
16秒前
17秒前
啵啵冰应助Dumbledonut采纳,获得50
17秒前
小高发布了新的文献求助10
18秒前
下山完成签到 ,获得积分10
19秒前
jw发布了新的文献求助10
19秒前
22秒前
111完成签到,获得积分10
22秒前
23秒前
淡定的定帮完成签到,获得积分10
24秒前
Orange应助dreamlightzy采纳,获得10
25秒前
28秒前
jdio完成签到,获得积分10
30秒前
31秒前
KaK发布了新的文献求助10
32秒前
Arbor发布了新的文献求助10
34秒前
无情听南发布了新的文献求助10
34秒前
Sherlock完成签到,获得积分10
35秒前
科研通AI2S应助jovi采纳,获得10
37秒前
李雨完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753439
求助须知:如何正确求助?哪些是违规求助? 3297042
关于积分的说明 10096789
捐赠科研通 3011741
什么是DOI,文献DOI怎么找? 1654166
邀请新用户注册赠送积分活动 788616
科研通“疑难数据库(出版商)”最低求助积分说明 752962