A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation

全球导航卫星系统应用 惯性测量装置 人工神经网络 计算机科学 实时计算 环境科学 人工智能 全球定位系统 电信
作者
Rui Sun,Xiaotong Shang,Qi Cheng,Lei Jiang,Sheng Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086310-086310 被引量:4
标识
DOI:10.1088/1361-6501/ad4623
摘要

Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accuracy global navigation satellite systems (GNSS) based on carrier phase observations. The complexity of urban environments, however, means that GNSS signals are prone to reflection, diffraction and blockage by tall buildings, causing a degraded positioning accuracy. To address this issue, we have proposed a tightly coupled single-frequency multi-system single-epoch real-time kinematic (RTK) GNSS/inertial measurement unit (IMU) integration algorithm with the assistance of genetic algorithm back propagation based on low-cost IMU equipment for challenging urban navigation. Unlike the existing methods, which only use IMU corrections predicted by machine learning as a direct replacement of filtering corrections during GNSS outages, this algorithm introduces a more accurate and efficient IMU corrections prediction model, and it is underpinned by a dual-check GNSS assessment where the weights of GNSS measurements and neural network predictions are adaptively adjusted based on duration of the integrated system GNSS failure, assisting RTK/IMU integration in GNSS outages or malfunction conditions. Field tests demonstrate that the proposed prediction model results in a 68.69% and 69.03% improvement in the root mean square error in the 2D and 3D component when the training and testing data are collected under 150 s GNSS signal-blocked conditions. This corresponds to 52.43% and 51.27% for GNSS signals discontinuously blocked with 500 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勾勾1991完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助大气亦巧采纳,获得10
1秒前
2秒前
汉堡包应助wade采纳,获得10
2秒前
张学习完成签到,获得积分10
3秒前
蔡军完成签到 ,获得积分10
3秒前
白桃战士完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
4秒前
端庄的冬天完成签到,获得积分10
4秒前
小栩完成签到 ,获得积分10
5秒前
啦啦啦啦啦啦啦啦完成签到 ,获得积分10
5秒前
曲沛萍发布了新的文献求助10
5秒前
宁阿霜发布了新的文献求助20
6秒前
SOO应助研友_5476B5采纳,获得10
6秒前
夏风完成签到 ,获得积分10
7秒前
隐形曼青应助萧小五采纳,获得10
7秒前
Jiawei完成签到,获得积分10
7秒前
nieanicole发布了新的文献求助10
7秒前
小橙同学完成签到 ,获得积分10
7秒前
Ava应助yukinade采纳,获得10
8秒前
爆米花应助hahhh7采纳,获得10
8秒前
8秒前
深情安青应助leodu采纳,获得10
9秒前
9秒前
10秒前
开心完成签到,获得积分10
11秒前
Never stall完成签到,获得积分10
11秒前
11秒前
11秒前
甜美的雁开完成签到,获得积分20
12秒前
猫归四海关注了科研通微信公众号
12秒前
CipherSage应助vinecho采纳,获得30
12秒前
12秒前
大气亦巧完成签到,获得积分10
13秒前
ding应助2025tangtang采纳,获得10
13秒前
13秒前
一心完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653