A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation

全球导航卫星系统应用 惯性测量装置 人工神经网络 计算机科学 实时计算 环境科学 人工智能 全球定位系统 电信
作者
Rui Sun,Xiaotong Shang,Qi Cheng,Lei Jiang,Sheng Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086310-086310 被引量:12
标识
DOI:10.1088/1361-6501/ad4623
摘要

Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accuracy global navigation satellite systems (GNSS) based on carrier phase observations. The complexity of urban environments, however, means that GNSS signals are prone to reflection, diffraction and blockage by tall buildings, causing a degraded positioning accuracy. To address this issue, we have proposed a tightly coupled single-frequency multi-system single-epoch real-time kinematic (RTK) GNSS/inertial measurement unit (IMU) integration algorithm with the assistance of genetic algorithm back propagation based on low-cost IMU equipment for challenging urban navigation. Unlike the existing methods, which only use IMU corrections predicted by machine learning as a direct replacement of filtering corrections during GNSS outages, this algorithm introduces a more accurate and efficient IMU corrections prediction model, and it is underpinned by a dual-check GNSS assessment where the weights of GNSS measurements and neural network predictions are adaptively adjusted based on duration of the integrated system GNSS failure, assisting RTK/IMU integration in GNSS outages or malfunction conditions. Field tests demonstrate that the proposed prediction model results in a 68.69% and 69.03% improvement in the root mean square error in the 2D and 3D component when the training and testing data are collected under 150 s GNSS signal-blocked conditions. This corresponds to 52.43% and 51.27% for GNSS signals discontinuously blocked with 500 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼诗桃发布了新的文献求助10
1秒前
幽默的语蕊完成签到,获得积分20
1秒前
2秒前
gladuhere完成签到 ,获得积分10
3秒前
TT0622完成签到,获得积分10
4秒前
科研通AI6应助fujun0095采纳,获得10
5秒前
王子怡发布了新的文献求助10
6秒前
Doctor_Peng完成签到,获得积分10
6秒前
白斯特完成签到,获得积分10
6秒前
sophiemore完成签到,获得积分10
6秒前
6秒前
7秒前
乐观的眼睛完成签到,获得积分10
9秒前
22完成签到,获得积分10
10秒前
11秒前
高伟杰完成签到,获得积分10
11秒前
石烟祝完成签到,获得积分10
14秒前
GongSyi发布了新的文献求助10
15秒前
MinQi完成签到,获得积分10
15秒前
辉辉完成签到 ,获得积分10
16秒前
沿途有你完成签到 ,获得积分10
19秒前
CodeCraft应助不想上班了采纳,获得10
21秒前
萝卜完成签到,获得积分10
23秒前
yulx001完成签到,获得积分10
24秒前
25秒前
抹茶肥肠完成签到,获得积分10
26秒前
27秒前
2211完成签到,获得积分10
28秒前
秋沧海发布了新的文献求助10
29秒前
29秒前
30秒前
科研狗完成签到,获得积分10
31秒前
yulx001发布了新的文献求助10
31秒前
曾经耳机完成签到 ,获得积分10
31秒前
31秒前
lllooo完成签到,获得积分10
32秒前
32秒前
33秒前
BPATIENT应助抹茶肥肠采纳,获得10
33秒前
丘比特应助拉萌采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560690
求助须知:如何正确求助?哪些是违规求助? 4645958
关于积分的说明 14676816
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516803
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136