A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation

全球导航卫星系统应用 惯性测量装置 人工神经网络 计算机科学 实时计算 环境科学 人工智能 全球定位系统 电信
作者
Rui Sun,Xiaotong Shang,Qi Cheng,Lei Jiang,Sheng Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086310-086310 被引量:4
标识
DOI:10.1088/1361-6501/ad4623
摘要

Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accuracy global navigation satellite systems (GNSS) based on carrier phase observations. The complexity of urban environments, however, means that GNSS signals are prone to reflection, diffraction and blockage by tall buildings, causing a degraded positioning accuracy. To address this issue, we have proposed a tightly coupled single-frequency multi-system single-epoch real-time kinematic (RTK) GNSS/inertial measurement unit (IMU) integration algorithm with the assistance of genetic algorithm back propagation based on low-cost IMU equipment for challenging urban navigation. Unlike the existing methods, which only use IMU corrections predicted by machine learning as a direct replacement of filtering corrections during GNSS outages, this algorithm introduces a more accurate and efficient IMU corrections prediction model, and it is underpinned by a dual-check GNSS assessment where the weights of GNSS measurements and neural network predictions are adaptively adjusted based on duration of the integrated system GNSS failure, assisting RTK/IMU integration in GNSS outages or malfunction conditions. Field tests demonstrate that the proposed prediction model results in a 68.69% and 69.03% improvement in the root mean square error in the 2D and 3D component when the training and testing data are collected under 150 s GNSS signal-blocked conditions. This corresponds to 52.43% and 51.27% for GNSS signals discontinuously blocked with 500 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃乘风发布了新的文献求助10
1秒前
8899完成签到,获得积分10
2秒前
3秒前
3秒前
在水一方应助你好采纳,获得10
3秒前
3秒前
明天发布了新的文献求助10
4秒前
科研通AI6应助Efaith采纳,获得10
4秒前
4秒前
GL完成签到,获得积分10
5秒前
5秒前
迷路完成签到,获得积分10
5秒前
rio发布了新的文献求助10
6秒前
6秒前
7秒前
潘健康发布了新的文献求助10
7秒前
7秒前
Jasper应助heima采纳,获得10
8秒前
9秒前
9秒前
Rozen发布了新的文献求助10
9秒前
9秒前
GL发布了新的文献求助10
9秒前
gao发布了新的文献求助10
11秒前
哈哈哈完成签到,获得积分20
11秒前
rio完成签到,获得积分10
13秒前
lucky发布了新的文献求助10
13秒前
13秒前
13秒前
TingWan发布了新的文献求助10
14秒前
cxm666发布了新的文献求助10
14秒前
羊村第一巴图鲁完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
所所应助臨水照花人采纳,获得10
17秒前
18秒前
18秒前
彩色诗云发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086