A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation

全球导航卫星系统应用 惯性测量装置 人工神经网络 计算机科学 实时计算 环境科学 人工智能 全球定位系统 电信
作者
Rui Sun,Xiaotong Shang,Qi Cheng,Lei Jiang,Sheng Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086310-086310 被引量:4
标识
DOI:10.1088/1361-6501/ad4623
摘要

Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accuracy global navigation satellite systems (GNSS) based on carrier phase observations. The complexity of urban environments, however, means that GNSS signals are prone to reflection, diffraction and blockage by tall buildings, causing a degraded positioning accuracy. To address this issue, we have proposed a tightly coupled single-frequency multi-system single-epoch real-time kinematic (RTK) GNSS/inertial measurement unit (IMU) integration algorithm with the assistance of genetic algorithm back propagation based on low-cost IMU equipment for challenging urban navigation. Unlike the existing methods, which only use IMU corrections predicted by machine learning as a direct replacement of filtering corrections during GNSS outages, this algorithm introduces a more accurate and efficient IMU corrections prediction model, and it is underpinned by a dual-check GNSS assessment where the weights of GNSS measurements and neural network predictions are adaptively adjusted based on duration of the integrated system GNSS failure, assisting RTK/IMU integration in GNSS outages or malfunction conditions. Field tests demonstrate that the proposed prediction model results in a 68.69% and 69.03% improvement in the root mean square error in the 2D and 3D component when the training and testing data are collected under 150 s GNSS signal-blocked conditions. This corresponds to 52.43% and 51.27% for GNSS signals discontinuously blocked with 500 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangpeixin完成签到,获得积分10
刚刚
刚刚
Bob完成签到,获得积分10
刚刚
1秒前
科研通AI5应助Parzival采纳,获得10
1秒前
2秒前
阿水完成签到,获得积分10
2秒前
2秒前
战神幽默发布了新的文献求助10
2秒前
独一无二发布了新的文献求助10
2秒前
静爸完成签到,获得积分20
3秒前
3秒前
梦曦完成签到,获得积分10
3秒前
adminlu完成签到 ,获得积分10
3秒前
3秒前
韋晴发布了新的文献求助10
4秒前
lili完成签到,获得积分10
4秒前
852应助卡拉布哔布采纳,获得10
4秒前
闾丘笑卉发布了新的文献求助10
4秒前
科研通AI5应助幽默的语蕊采纳,获得10
5秒前
七七七呀完成签到,获得积分10
5秒前
静爸发布了新的文献求助10
5秒前
5秒前
张张发布了新的文献求助10
5秒前
科研通AI5应助魏伯安采纳,获得10
6秒前
7秒前
笑点低的棒球完成签到,获得积分10
7秒前
CVEN完成签到,获得积分10
7秒前
小冲发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
自由采枫发布了新的文献求助10
10秒前
hll完成签到,获得积分20
11秒前
wycai发布了新的文献求助10
11秒前
菠萝菠萝哒应助air采纳,获得30
12秒前
12秒前
刘佳发布了新的文献求助10
13秒前
13秒前
佛山婆婆完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488497
求助须知:如何正确求助?哪些是违规求助? 3076158
关于积分的说明 9143934
捐赠科研通 2768523
什么是DOI,文献DOI怎么找? 1519179
邀请新用户注册赠送积分活动 703643
科研通“疑难数据库(出版商)”最低求助积分说明 701932