先天性肾上腺增生
甾体11β-羟化酶
突变
生物
错义突变
无义突变
复合杂合度
外显子
移码突变
21羟化酶
CYP17A1型
内分泌学
遗传学
内科学
基因突变
基因
作者
Chenmin Wei,Zichen Zhang,Miaomiao Sang,Hao Dai,Tao Yang,Min Sun
标识
DOI:10.1016/j.jsbmb.2021.105882
摘要
Steroid 11β-hydroxylase deficiency (11β-OHD), which is caused by mutations of the CYP11B1 gene, is the second leading cause of congenital adrenal hyperplasia (CAH), an autosomal recessive inherited disorder. Here, we report a case of classic 11β-OHD in a Chinese boy characterized by hypertension, penile enlargement, skin pigmentation, and acne. Molecular analysis of CYP11B1 revealed that the patient was compound heterozygous for a c.217C > T (p.Q73X) mutation in exon 1 and a c.421C > T (p.R141X) mutation in exon 3. His parents carried the novel c.217C > T (p.Q73X) mutation and the prevalent c.421C > T (p.R141X) mutation. Furthermore, we identified a novel 217-bp substitution mutation (Q73X) in CYP11B1 that generates a truncated protein without biological activity, which is likely to be pathogenic. Pursuant to the phenotype of the proband and his family, the Q73X mutation is inferred to exacerbate the disease burden of the R141X mutation, a known pathogenic variant. To further explore this possibility, selecting the x-ray structure of human CYP11B2 as a template, we built three-dimensional homologous models of the normal and mutant proteins. In the mutant model, a change from a helix to terminal structure in amino acids 73 and 141 occurred that affected the binding capacity of CYP11B1 with heme and impaired 11β-hydroxylase activity. Taken together, our findings expand the spectrum of known mutations leading to 11β-OHD and provide evidence to study genotype-phenotype concordance, confirm early diagnosis and treatment of 11β-OHD, and prevent most complications.
科研通智能强力驱动
Strongly Powered by AbleSci AI