Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties

材料科学 纳米复合材料 复合材料 涂层 炭黑 结晶度 聚合物 粒径 动态力学分析 玻璃化转变 微观结构 化学工程 天然橡胶 工程类
作者
E. Petrovicova,Richard A. Knight,Linda S. Schadler,T.E. Twardowski
出处
期刊:Journal of Applied Polymer Science [Wiley]
卷期号:78 (13): 2272-2289 被引量:5
标识
DOI:10.1002/1097-4628(20001220)78:13<2272::aid-app50>3.0.co;2-u
摘要

Journal of Applied Polymer ScienceVolume 78, Issue 13 p. 2272-2289 Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties E. Petrovicova, E. Petrovicova Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Search for more papers by this authorR. Knight, R. Knight Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Search for more papers by this authorL. S. Schadler, L. S. Schadler Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, New York 12180-3590Search for more papers by this authorT. E. Twardowski, Corresponding Author T. E. Twardowski [email protected] Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875===Search for more papers by this author E. Petrovicova, E. Petrovicova Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Search for more papers by this authorR. Knight, R. Knight Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Search for more papers by this authorL. S. Schadler, L. S. Schadler Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, New York 12180-3590Search for more papers by this authorT. E. Twardowski, Corresponding Author T. E. Twardowski [email protected] Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875Drexel University, Department of Materials Engineering, 3141 Chestnut Street, Philadelphia, Pennsylvania, 19104-2875===Search for more papers by this author First published: 23 October 2000 https://doi.org/10.1002/1097-4628(20001220)78:13<2272::AID-APP50>3.0.CO;2-UCitations: 97Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Nylon 11 coatings filled with nominal 0–15 vol % of nanosized silica or carbon black were produced using the high velocity oxy-fuel combustion spray process. The scratch and sliding wear resistance, mechanical, and barrier properties of nanocomposite coatings were measured. The effect of powder initial size, filler content, filler chemistry, coating microstructure, and morphology were evaluated. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol % contents of hydrophobic silica or carbon black, respectively, relative to unfilled coatings. This increase appeared to be primarily attributable to filler addition and increased matrix crystallinity. Particle surface chemistry, distribution, and dispersion also contributed to the differences in coating scratch and wear performance. Reinforcement of the polymer matrix resulted in increases of up to 205% in the glass storage modulus of nanocomposite coatings. This increase was shown to be a function of both the surface chemistry and amount of reinforcement. The storage modulus of nanocomposite coatings at temperatures above the glass transition temperature was higher than that of unfilled coatings by up to 195%, depending primarily on the particle size of the starting polymer powder. Results also showed that the water vapor transmission rate through nanoreinforced coatings decreased by up to 50% compared with pure polymer coatings. The aqueous permeability of coatings produced from smaller particle size polymers (D-30) was lower than the permeability of coatings produced from larger particles because of the lower porosities and higher densities achieved in D-30 coatings. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2272–2289, 2000 REFERENCES 1 Sumita, M.; Shizuma, T.; Miyasaka, K.; Ishikawa, K. J Macromol Sci Phys 1983, B22, 601. 10.1080/00222348308224779 Web of Science®Google Scholar 2 Sumita, M.; Tsukumo, T.; Miyasaka, K.; Ishikawa, K. J Mater Sci 1983, 18, 1758. 10.1007/BF00542072 CASWeb of Science®Google Scholar 3 Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719. 10.1021/cm00046a026 CASWeb of Science®Google Scholar 4 Messersmith, P. B.; Giannelis, E. P. J Polym Sci A Polym Chem 1995, 33, 1047. 10.1002/pola.1995.080330707 CASWeb of Science®Google Scholar 5 Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Polym Sci Part A Polym Chem 1993, 31, 2493. 10.1002/pola.1993.080311009 CASWeb of Science®Google Scholar 6 Lewis, T. B.; Nielsen, L. E. J Appl Polym Sci 1970, 14, 1449. 10.1002/app.1970.070140604 CASWeb of Science®Google Scholar 7 Kumar, V.; Erwin, L. Antec '87, 1987, 152. CASGoogle Scholar 8 Giannelis, E. P. Adv Mater 1996, 8, 29. 10.1002/adma.19960080104 CASWeb of Science®Google Scholar 9 Burnside, S. D.; Giannelis, E. P. Chem Mater 1995, 7, 1597. 10.1021/cm00057a001 CASWeb of Science®Google Scholar 10 Schadler, L. S.; Laul, K. O.; Smith, R. W.; Petrovicova, E. J Therm Spray Technol 1997, 6, 475. 10.1007/s11666-997-0034-4 CASWeb of Science®Google Scholar 11 Petrovicova, E.; Knight, R.; Schadler, L. S.; Twardowski, T. J Appl Polym Sci 2000, 77, 1684. 10.1002/1097-4628(20000822)77:8<1684::AID-APP5>3.0.CO;2-Q CASWeb of Science®Google Scholar 12 Nielsen, L. E.; Landel, R. F. Mechanical Properties of Polymers and Composites; Marcel Dekker: New York, 1994. Google Scholar 13 Einstein, A. Ann Phys 1906, 19, 289; 1911, 34, 591. 10.1002/andp.19063240204 CASWeb of Science®Google Scholar 14 Guth, E. J Appl Phys 1945, 16, 20; 10.1063/1.1707495 CASWeb of Science®Google Scholar Smallwood, H. M. J Appl Phys 1944, 15, 758. 10.1063/1.1707385 CASWeb of Science®Google Scholar 15 Sato, Y.; Furukawa, J. Rubber Chem Technol 1962, 35, 857. 10.5254/1.3539978 CASGoogle Scholar 16 Mooney, M. J Colloid Sci 1951, 6, 162. 10.1016/0095-8522(51)90036-0 CASWeb of Science®Google Scholar 17 Eilers, H.; Van Dyck, L. Kolloid Z 1941, 97, 313. 10.1007/BF01503023 CASWeb of Science®Google Scholar 18 Bills, K.; Sweeny, K.; Salcedo, F. J Appl Polym Sci 1960, 12, 259. 10.1002/app.1960.070041203 Google Scholar 19 Eckstein, Y.; Dreyfuss, P. J Polym Sci Polym Phys 1982, 20, 49. 10.1002/pol.1982.180200104 CASWeb of Science®Google Scholar 20 Quemada, D. Rheol Acta 1972, 16, 82. 10.1007/BF01516932 Web of Science®Google Scholar 21 Frankel, N. A.; Acrivos, A. Chem Eng Sci 1967, 22, 847. 10.1016/0009-2509(67)80149-0 Web of Science®Google Scholar 22 Kerner, E. H. Proc Phys Soc 1956, B69, 808. 10.1088/0370-1301/69/8/305 Web of Science®Google Scholar 23 Nielsen, L. E. J Polym Sci Polym Phys 1979, 17, 1897. 10.1002/pol.1979.180171106 CASWeb of Science®Google Scholar 24 Lewis, T. B.; Nielsen, L. E. Trans Soc Rheol 1968, 12, 421. 10.1122/1.549114 CASGoogle Scholar 25 Boluk, M. Y.; Schreiber, H. P. Polym Compos 1986, 7, 295. 10.1002/pc.750070506 CASWeb of Science®Google Scholar 26 Vollenberg, P. H. T.; Heikens, D. Polymer 1989, 30, 1656. 10.1016/0032-3861(89)90326-1 CASWeb of Science®Google Scholar 27 Giannelis, E. P. JOM 1992, 44, 28. 10.1007/BF03222789 CASWeb of Science®Google Scholar 28 Kendall, K.; Sherliker, F. R. Br Polym J 1980, 12, 85. 10.1002/pi.4980120303 CASGoogle Scholar 29 Iisaka, K., Shibayama, K. J Appl Polym Sci 1978, 22, 3135. 10.1002/app.1978.070221109 CASWeb of Science®Google Scholar 30 Goosey, M. T. In Polymer Permeability; J. Comyn, Ed.; Elsevier Applied Science: New York, 1985; p. 309. 10.1007/978-94-009-4858-7_8 Google Scholar 31 de Candia, F.; Vittoria, V. J Appl Polym Sci 1994, 51, 2103. 10.1002/app.1994.070511301 CASWeb of Science®Google Scholar 32 McCrone, W. C. In Physics and Chemistry of the Organic Solid State; D. Fox; M. M. Labes; A. Weissberger, Eds.; John Wiley & Sons: New York, 1965. Google Scholar 33 Eitzman, D. M.; Melkote, R. R.; Cussler, E. L. AIChE J 1996, 42, 2. 10.1002/aic.690420103 CASWeb of Science®Google Scholar 34 Cussler, E. L.; Hughes, S. E.; Ward, W.J.; Rutheford, A. J Membr Sci 1988, 38, 161. 10.1016/S0376-7388(00)80877-7 CASWeb of Science®Google Scholar 35 Barrer, R. M. In Diffusion in Polymers; J. Crank; G. S. Park, Eds.; Academic Press: London, 1968. Google Scholar 36 Plueddemann, E. P. Silane Coupling Agents; Plenum Press: New York, 1982. 10.1007/978-1-4899-0342-6 Google Scholar 37 Annual Book of ASTM Standards, D-5178-91; ASTM: Philadelphia, 1991; Vol. 06.01. Google Scholar 38 Annual Book of ASTM Standards, D-1653-93; ASTM: Philadelphia, 1991; Vol. 06.01. Google Scholar 39 Miller, E. Introduction to Plastics and Composites; Marcel Dekker: New York, 1996. Google Scholar 40 Perkins, W. G.; Porter, R. S. J Mater Sci 1981, 16, 1458. 10.1007/BF02396864 CASWeb of Science®Google Scholar 41 Buckley, D. H. Friction, Wear and Lubrication in Vacuum, Scientific and Technical Information Office; National Aeronautic and Space Administration: Washington, D.C., 1971. Google Scholar 42 Ramasubramanian, N.; Krishnamurthy, R.; Malhotra, S. K. Wear 1993, 163-164, 631. 10.1016/0043-1648(93)90555-Z Web of Science®Google Scholar 43 Clerico, M. Wear 1969, 13, 183. 10.1016/0043-1648(69)90150-1 CASWeb of Science®Google Scholar 44 O'Brien, J.; Cashell, E.; Wardell, G. E.; McBriety, V. J. Macromolecules 1976, 9, 653. 10.1021/ma60052a025 CASWeb of Science®Google Scholar 45 Dosiere, M.; Point, J. J. J Polym Sci Polym Phys 1984, 22, 1383. 10.1002/pol.1984.180220803 CASWeb of Science®Google Scholar Citing Literature Volume78, Issue1320 December 2000Pages 2272-2289 ReferencesRelatedInformation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助lpw采纳,获得10
1秒前
有思想完成签到,获得积分10
2秒前
zhtingho完成签到,获得积分10
3秒前
书亚完成签到,获得积分20
3秒前
4秒前
吹泡泡的红豆完成签到 ,获得积分10
4秒前
5秒前
高高菠萝完成签到 ,获得积分10
6秒前
6秒前
小赵发布了新的文献求助10
7秒前
科目三应助美味的薯片采纳,获得10
7秒前
7秒前
qizhia完成签到,获得积分10
7秒前
甜味白开水完成签到,获得积分10
9秒前
无误发布了新的文献求助10
9秒前
9秒前
汉堡包应助娃哈哈采纳,获得10
10秒前
qizhia发布了新的文献求助10
11秒前
陈文文完成签到 ,获得积分10
11秒前
今后应助好学的猪采纳,获得10
12秒前
秘小先儿完成签到,获得积分10
12秒前
阳光无声完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
王浩宇关注了科研通微信公众号
14秒前
15秒前
zihanwang应助酷酷海豚采纳,获得10
15秒前
科研狗完成签到,获得积分10
15秒前
16秒前
腾桑发布了新的文献求助10
16秒前
lin完成签到,获得积分20
17秒前
李某某完成签到,获得积分10
17秒前
书亚发布了新的文献求助10
18秒前
东东呀发布了新的文献求助10
19秒前
19秒前
20秒前
Ammon发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070