微塑料
青枯病
青枯菌
根际
龙葵
园艺
生物
农学
细菌
病菌
生态学
微生物学
遗传学
作者
Xuesong Cao,Chuanxi Wang,Xing Luo,Le Yue,Jason C. White,Zhenyu Wang,Baoshan Xing
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-06-26
卷期号:18 (27): 18071-18084
被引量:1
标识
DOI:10.1021/acsnano.4c05875
摘要
Concern over nano- and microplastic contamination of terrestrial ecosystems has been increasing. However, little is known about the effect of nano- and microplastics on the response of terrestrial ecosystems already under biotic stress. Here, nano- and microplastics at 150–500 mg·kg–1 were exposed to tomatoes (Solanum lycopersicum L.), and the results demonstrate that the presence of nano- and microplastics increased the occurrence of bacterial wilt caused by Ralstonia solanacearum in tomatoes as a function of contaminant concentration, surface modification, and size. Our work shows that nanoplastics (30 nm, 250 mg·kg–1) increased the disease incidence by 2.19-fold. The disease severities in amino- and carboxyl-modified nanoplastic treatments were 30.4 and 21.7% higher than that in unmodified nanoplastic treatment, respectively. The severity of disease under the influence of different-sized nano- and microplastic treatments followed the order 30 > 100 nm > 1 > 50 μm. Mechanistically, nanoplastics disrupted the structure of the tomato rhizosphere soil bacterial community and suppressed the induced systemic resistance in tomato; nanoplastics in planta decreased the salicylic acid and jasmonic acid content in tomatoes, thus inhibiting systemic acquired resistance; and microplastics increased the soil water retention, leading to increased pathogen abundance in the rhizosphere. Additionally, the leachates from nano- and microplastics had no effect on disease occurrence or the growth of tomatoes. Our findings highlight a potential risk of nano- and microplastic contamination to agriculture sustainability and food security.
科研通智能强力驱动
Strongly Powered by AbleSci AI