A Feature-Fused Convolutional Neural Network for Emotion Recognition From Multichannel EEG Signals

判别式 计算机科学 模式识别(心理学) 人工智能 卷积神经网络 脑电图 特征提取 特征(语言学) 语音识别 心理学 语言学 哲学 精神科
作者
Qunli Yao,Heng Gu,Shaodi Wang,Xiaoli Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 11954-11964 被引量:20
标识
DOI:10.1109/jsen.2022.3172133
摘要

Automatic emotion recognition based on multichannel electroencephalogram (EEG) data is a fundamental but challenging problem. Some previous researches ignore the correlation information of brain activity among the inter-channel and inter-frequency bands, which may provide potential information related to emotional states. In this work, we propose a 3-D feature construction method based on spatial-spectral information. First, power values per channel are arranged into a 2-D spatial feature representation according to the position of electrodes. Then, features from different frequency bands are arranged into a 3-D integration feature tensor to capture their complementary information. Simultaneously, we propose a novel framework based on feature fusion modules and dilated bottleneck-based convolutional neural networks (DBCN) which builds a more discriminative model to process the 3-D features for EEG emotion recognition. Both participant-dependent and participant-independent protocols are conducted to evaluate the performance of the proposed DBCN on the DEAP benchmark datasets. Mean 2-class classification accuracies of 89.67% / 90.93% (for participant-dependent) and 79.45% / 83.98% (for participant-independent) were respectively achieved for arousal / valence. These results suggest the proposed method based on the integration of spatial and spectral information could be extended to the assessment of mood disorder and human-computer interaction (HCI) applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kx发布了新的文献求助10
刚刚
1秒前
1秒前
谨言发布了新的文献求助10
2秒前
2秒前
cnas完成签到,获得积分10
2秒前
klandcy完成签到,获得积分10
2秒前
白居易发布了新的文献求助10
3秒前
Yutound完成签到 ,获得积分10
3秒前
Ava应助虚幻的一一采纳,获得10
3秒前
NexusExplorer应助YY采纳,获得10
4秒前
凯凯完成签到,获得积分10
4秒前
SciGPT应助巧克力大王采纳,获得10
5秒前
LL完成签到,获得积分20
5秒前
6秒前
科研通AI2S应助uni采纳,获得10
6秒前
科研通AI5应助ss采纳,获得10
6秒前
呆啊发布了新的文献求助10
6秒前
温酒随行完成签到,获得积分10
6秒前
7秒前
7秒前
今后应助liusx123采纳,获得10
7秒前
7秒前
8秒前
星辰大海应助超文献采纳,获得10
8秒前
8秒前
长安完成签到,获得积分20
9秒前
peekaboo完成签到,获得积分10
10秒前
10秒前
zmy发布了新的文献求助10
10秒前
11秒前
lxd应助kiki采纳,获得20
11秒前
sisii发布了新的文献求助10
11秒前
无奈书包完成签到,获得积分10
12秒前
12秒前
12秒前
欣喜访旋发布了新的文献求助10
12秒前
一朵会长树的花完成签到,获得积分20
12秒前
梅TiAmo发布了新的文献求助10
13秒前
Akim应助Air采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199