Real-Time Big Data Analytics and Proactive Traffic Safety Management Visualization System

大数据 撞车 计算机科学 可视化 实时数据 实时计算 数据可视化 数据挖掘 万维网 程序设计语言
作者
Mohamed Abdel‐Aty,Ou Zheng,Yina Wu,Amr Abdelraouf,Heesub Rim,Pei Li
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (8) 被引量:7
标识
DOI:10.1061/jtepbs.teeng-7530
摘要

Big data and data-driven analysis could be utilized for traffic management to improve road safety and the performance of transportation systems. This paper introduces a web-based proactive traffic safety management (PATM) and real-time big data visualization tool, which is based on an award-winning system that won the US Department of Transportation (USDOT) Solving for Safety Visualization Challenge and was selected as one of the USDOT Safety Data Initiative (SDI) Beta Tools. State-of-the-art research, especially for real-time crash prediction and PATM, are deployed in this study. A significant amount of real-time data is accessed by the system in order to conduct data-driven analysis, such as traffic data, weather data, and video data from closed-circuit television (CCTV) live streams. Based on the data, multiple modules have been developed, including real-time crash/secondary crash prediction, CCTV-based expedited detection, PATM recommendation, data sharing, and report generation. Both real-time data and the system outputs are visualized at the front end using interactive maps and various types of figures to represent the data distribution and efficiently reveal hidden patterns. Evaluation of the real-time crash prediction outputs is conducted based on one-month real-world crash data and the prediction results from the system. The comparison results indicate excellent prediction performance. When considering spatial-temporal tolerance, the sensitivity and false alarm rate of the prediction results [i.e., high crash potential event (HCPE)] are 0.802 and 0.252, respectively. Current and potential implementation are also discussed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Micky完成签到,获得积分10
1秒前
1秒前
老孙完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
5秒前
7秒前
自然的qm发布了新的文献求助10
8秒前
赞多发布了新的文献求助10
8秒前
优秀的小豆芽完成签到,获得积分10
8秒前
gaw2008完成签到,获得积分10
8秒前
9秒前
荣浩宇完成签到,获得积分10
11秒前
顾矜应助留胡子的以蓝采纳,获得10
12秒前
念之完成签到 ,获得积分10
12秒前
chen完成签到,获得积分10
12秒前
要减肥冰菱完成签到 ,获得积分10
13秒前
16秒前
Wency发布了新的文献求助10
21秒前
moncypool给moncypool的求助进行了留言
22秒前
红枫没有微雨怜完成签到 ,获得积分10
22秒前
23秒前
25秒前
myl完成签到,获得积分10
26秒前
DSFSD完成签到,获得积分10
26秒前
27秒前
27秒前
Owen应助罗霄山采纳,获得10
27秒前
wo666完成签到,获得积分10
27秒前
自然的qm完成签到,获得积分10
28秒前
28秒前
wb发布了新的文献求助20
28秒前
在鹿特丹完成签到,获得积分10
28秒前
xzy998应助beizn1214采纳,获得10
31秒前
xianyaoz完成签到 ,获得积分10
31秒前
wo666发布了新的文献求助10
32秒前
34秒前
迷人嫣然完成签到,获得积分10
34秒前
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187