Developing an enhanced UNet-based architecture for breast tumor segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 人工智能 图像分割 医学影像学 超声波 深度学习 乳房成像 乳腺癌 编码器 模式识别(心理学) 乳腺摄影术 放射科 医学 癌症 内科学 操作系统
作者
Donya Khaledyan,Thomas J. Marini,Avice M. O’Connell,Kevin J. Parker
标识
DOI:10.1117/12.3006770
摘要

Ultrasound imaging is a powerful imaging modality for diagnosing breast tumors due to its non-invasive nature, real-time imaging capabilities, and lack of ionizing radiation. Ultrasound imaging has certain limitations that can make it demanding to detect masses compared to other imaging modalities. Therefore, breast ultrasound image segmentation is a crucial and challenging task in computer-aided diagnosis (CAD) systems. Deep learning (DL) has revolutionized medical image segmentation. Among DL models, UNet architecture is widely used for its exceptional performance. This study assesses the effectiveness of sharpening filters and attention mechanisms between the decoder and encoder in UNet models for breast ultrasound segmentation. Combining Sharp UNet and Attention UNet, we propose a novel approach called Parallel Sharp Attention UNet (PSA_UNet). A public dataset of 780 cases was utilized in this study. The results are promising for the proposed method, with the Dice coefficient and F1 score of 0.93 and 0.94, respectively. McNemar's results show that our proposed model outperforms the earlier designs upon which our model is based. In addition to introducing a new network, this study highlights the importance of optimization and finetuning in improving UNet-based segmentation models. The results offer potential improvements in breast cancer diagnosis and treatment planning through more accurate and efficient medical image segmentation techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccccgggmmm关注了科研通微信公众号
刚刚
希文完成签到,获得积分10
1秒前
2秒前
David完成签到,获得积分10
2秒前
洁净的嘉熙完成签到,获得积分10
3秒前
3秒前
Ava应助lxy采纳,获得30
4秒前
www完成签到,获得积分10
6秒前
叶子完成签到,获得积分10
6秒前
7秒前
爱吃肉完成签到,获得积分10
7秒前
daydream关注了科研通微信公众号
7秒前
任栎名完成签到,获得积分20
9秒前
zeng完成签到,获得积分10
9秒前
9秒前
hewd3发布了新的文献求助10
12秒前
Jarvis完成签到,获得积分10
13秒前
orixero应助愤怒的山兰采纳,获得10
13秒前
13秒前
13秒前
意面米助发布了新的文献求助10
14秒前
15秒前
16秒前
xixi发布了新的文献求助10
18秒前
20秒前
20秒前
彭于晏应助hewd3采纳,获得10
21秒前
popvich应助Azlne采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
干饭虫应助科研通管家采纳,获得10
22秒前
Rita应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
干饭虫应助科研通管家采纳,获得10
22秒前
干饭虫应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
23秒前
杨好圆完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020