Developing an enhanced UNet-based architecture for breast tumor segmentation in ultrasound images

分割 计算机科学 乳腺超声检查 人工智能 图像分割 医学影像学 超声波 深度学习 乳房成像 乳腺癌 编码器 模式识别(心理学) 乳腺摄影术 放射科 医学 癌症 内科学 操作系统
作者
Donya Khaledyan,Thomas J. Marini,Avice M. O’Connell,Kevin J. Parker
标识
DOI:10.1117/12.3006770
摘要

Ultrasound imaging is a powerful imaging modality for diagnosing breast tumors due to its non-invasive nature, real-time imaging capabilities, and lack of ionizing radiation. Ultrasound imaging has certain limitations that can make it demanding to detect masses compared to other imaging modalities. Therefore, breast ultrasound image segmentation is a crucial and challenging task in computer-aided diagnosis (CAD) systems. Deep learning (DL) has revolutionized medical image segmentation. Among DL models, UNet architecture is widely used for its exceptional performance. This study assesses the effectiveness of sharpening filters and attention mechanisms between the decoder and encoder in UNet models for breast ultrasound segmentation. Combining Sharp UNet and Attention UNet, we propose a novel approach called Parallel Sharp Attention UNet (PSA_UNet). A public dataset of 780 cases was utilized in this study. The results are promising for the proposed method, with the Dice coefficient and F1 score of 0.93 and 0.94, respectively. McNemar's results show that our proposed model outperforms the earlier designs upon which our model is based. In addition to introducing a new network, this study highlights the importance of optimization and finetuning in improving UNet-based segmentation models. The results offer potential improvements in breast cancer diagnosis and treatment planning through more accurate and efficient medical image segmentation techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
太空人完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
3秒前
该睡觉啦完成签到,获得积分20
3秒前
3秒前
莫x莫完成签到 ,获得积分10
5秒前
loewy完成签到,获得积分10
5秒前
黄婷发布了新的文献求助10
5秒前
5秒前
yuan完成签到,获得积分10
5秒前
zho发布了新的文献求助10
5秒前
5秒前
苏苏完成签到,获得积分10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得80
6秒前
Hello应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
万能图书馆应助内向秋寒采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
zzzq应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
soso应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
zzzq应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794