亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Detecting BRCA Mutations in High-Grade Ovarian Cancer Based on an Innovative Tumor Segmentation Method From Whole Slide Images

分割 病理 人工智能 卵巢癌 医学 计算机科学 癌症 内科学
作者
Raphaël Bourgade,Noémie Rabilloud,Tanguy Perennec,Thierry Pécot,Céline Garrec,A. Guédon,Capucine Delnatte,Stéphane Bézieau,Alexandra Lespagnol,Marie de Tayrac,Sébastien Henno,Christine Sagan,Claire Toquet,Jean‐François Mosnier,Solène-Florence Kammerer-Jacquet,Delphine Loussouarn
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (11): 100304-100304 被引量:4
标识
DOI:10.1016/j.modpat.2023.100304
摘要

BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-strand breaks through homologous recombination. Their mutations represent a significant proportion of homologous recombination deficiency and are a reliable effective predictor of sensitivity of high-grade ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by next-generation sequencing is costly and time-consuming and can be affected by various preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational status prediction from hematoxylin-eosin-safran–stained whole slide images (WSI) of HGOC. We constituted the OvarIA cohort composed of 867 patients with HGOC with known BRCA somatic mutational status from 2 different pathology departments. We first developed a tumor segmentation model according to dynamic sampling and then trained a visual representation encoder with momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA classifier on more than a million tumor tiles in multiple instance learning with an attention-based mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 and an intersection-over-union score of 0.847 on a test set of 50 WSI, while the BRCA classifier achieved the state-of-the-art area under the receiver operating characteristic curve of 0.739 in 5-fold cross-validation and 0.681 on the testing set. An additional multiscale approach indicates that the relevant information for predicting BRCA mutations is located more in the tumor context than in the cell morphology. Our results suggest that BRCA somatic mutations have a discernible phenotypic effect that could be detected by deep learning and could be used as a prescreening tool in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助sealking采纳,获得10
9秒前
LAN完成签到,获得积分10
32秒前
天天快乐应助lingduyu采纳,获得10
50秒前
tingyeh完成签到,获得积分10
51秒前
cao发布了新的文献求助10
56秒前
香蕉觅云应助飞_采纳,获得10
1分钟前
小王好饿完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
英俊的铭应助liu采纳,获得10
2分钟前
joanna完成签到,获得积分10
2分钟前
飞_完成签到,获得积分10
2分钟前
2分钟前
2分钟前
飞_发布了新的文献求助10
2分钟前
科研通AI2S应助cao采纳,获得10
3分钟前
3分钟前
3分钟前
liu发布了新的文献求助10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
子爵木完成签到 ,获得积分10
3分钟前
科研小刘发布了新的文献求助10
3分钟前
4分钟前
chi完成签到 ,获得积分10
4分钟前
大个应助科研小刘采纳,获得10
4分钟前
迷你的靖雁完成签到,获得积分10
4分钟前
乐乐完成签到,获得积分10
4分钟前
4分钟前
淡然平蓝发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天才小熊猫完成签到,获得积分10
5分钟前
jiangchuansm发布了新的文献求助20
5分钟前
5分钟前
科研小刘发布了新的文献求助10
5分钟前
linuo完成签到,获得积分10
5分钟前
orixero应助Aira采纳,获得10
5分钟前
5分钟前
xiekunwhy完成签到,获得积分10
6分钟前
夜阑听雨完成签到,获得积分0
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314