已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal data indicators for capturing cognitive, motivational, and emotional learning processes: A systematic literature review

模式 模态(人机交互) 认知 心理学 认知心理学 计算机科学 人工智能 社会科学 社会学 神经科学
作者
Omid Noroozi,Héctor J. Pijeira‐Díaz,Márta Sobocinski,Muhterem Dindar,Sanna Järvelä,Paul A. Kirschner
出处
期刊:Education and Information Technologies [Springer Nature]
卷期号:25 (6): 5499-5547 被引量:59
标识
DOI:10.1007/s10639-020-10229-w
摘要

Abstract This systematic review on data modalities synthesises the research findings in terms of how to optimally use and combine such modalities when investigating cognitive, motivational, and emotional learning processes. ERIC, WoS, and ScienceDirect databases were searched with specific keywords and inclusion criteria for research on data modalities, resulting in 207 relevant publications. We provide findings in terms of target journal, country, subject, participant characteristics, educational level, foci, type of data modality, research method, type of learning, learning setting, and modalities used to study the different foci. In total, 18 data modalities were classified. For the 207 multimodal publications, 721 occurrences of modalities were observed. The most popular modality was interview followed by survey and observation. The least common modalities were heart rate variability, facial expression recognition, and screen recording. From the 207 publications, 98 focused exclusively on the cognitive aspects of learning, followed by 27 publications that only focused on motivation, while only five publications exclusively focused on emotional aspects. Only 10 publications focused on a combination of cognitive, motivational, and emotional aspects of learning. Our results plea for the increased use of objective measures, highlight the need for triangulation of objective and subjective data, and demand for more research on combining various aspects of learning. Further, rather than researching cognitive, motivational, and emotional aspects of learning separately, we encourage scholars to tap into multiple learning processes with multimodal data to derive a more comprehensive view on the phenomenon of learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CC完成签到,获得积分10
1秒前
阿萌毛毛完成签到,获得积分10
2秒前
金枪鱼子完成签到,获得积分10
2秒前
杳鸢应助夏老师采纳,获得40
3秒前
JXY完成签到 ,获得积分10
3秒前
6秒前
金枪鱼子发布了新的文献求助10
9秒前
邓大卫完成签到,获得积分20
9秒前
娜行完成签到 ,获得积分10
10秒前
10秒前
xx完成签到 ,获得积分10
12秒前
15秒前
去你丫的随机昵称关注了科研通微信公众号
18秒前
张光光完成签到 ,获得积分10
18秒前
19秒前
香菜发布了新的文献求助10
19秒前
uujj发布了新的文献求助10
22秒前
芬芬完成签到,获得积分10
26秒前
MAYAN完成签到 ,获得积分10
28秒前
SCT发布了新的文献求助10
29秒前
32秒前
32秒前
atdawn1998发布了新的文献求助10
33秒前
40秒前
wskslife完成签到,获得积分10
47秒前
欢歌笑语完成签到,获得积分10
47秒前
49秒前
所所应助和谐蛋蛋采纳,获得10
50秒前
taku完成签到 ,获得积分10
55秒前
香菜发布了新的文献求助10
1分钟前
atdawn1998完成签到,获得积分10
1分钟前
uujj完成签到,获得积分20
1分钟前
atdawn1998发布了新的文献求助10
1分钟前
Winner完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ysssp完成签到,获得积分10
1分钟前
1分钟前
HS完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802