A machine learning algorithm to explore the drivers of carbon emissions in Chinese cities

计算机科学 碳纤维 人工智能 机器学习 算法 复合数
作者
Wenmei Yu,Lina Xia,Qiang Cao
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-75753-y
摘要

As the world's largest energy consumer and carbon emitter, the task of carbon emission reduction is imminent. In order to realize the dual-carbon goal at an early date, it is necessary to study the key factors affecting China's carbon emissions and their non-linear relationships. This paper compares the performance of six machine learning algorithms to that of traditional econometric models in predicting carbon emissions in China from 2011 to 2020 using panel data from 254 cities in China. Specifically, it analyzes the comparative importance of domestic economic, external economic, and policy uncertainty factors as well as the nonparametric relationship between these factors and carbon emissions based on the Extra-trees model. Results show that energy consumption (ENC) remains the root cause of increased carbon emissions among domestic economic factors, although government intervention (GOV) and digital finance (DIG) can significantly reduce it. Next, among the external economic and policy uncertainty factors, foreign direct investment (FDI) and economic policy uncertainty (EPU) are important factors influencing carbon emissions, and the partial dependence plots (PDPs) confirm the pollution haven hypothesis and also reveal the role of EPU in reducing carbon emissions. The heterogeneity of factors affecting carbon emissions is also analyzed under different city sizes, and it is found that ENC is a common driving factor in cities of different sizes, but there are some differences. Finally, appropriate policy recommendations are proposed by us to help China move rapidly towards a green and sustainable development path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助BOSSJING采纳,获得10
刚刚
纸上彩虹发布了新的文献求助10
1秒前
volzzz完成签到,获得积分10
1秒前
1秒前
大胆砖头完成签到 ,获得积分10
1秒前
小蘑菇应助强健的月饼采纳,获得10
2秒前
2秒前
神揽星辰入梦完成签到,获得积分10
2秒前
吾日三省吾身完成签到 ,获得积分10
2秒前
自爱悠然完成签到,获得积分10
3秒前
3秒前
4秒前
呆瓜完成签到,获得积分10
5秒前
布丁完成签到,获得积分10
5秒前
朴素的士晋完成签到,获得积分10
5秒前
燕尔蓝发布了新的文献求助10
5秒前
我是王浩腾我是健身王完成签到,获得积分10
6秒前
6秒前
杰克李李发布了新的文献求助10
6秒前
wjs0406发布了新的文献求助10
6秒前
老李完成签到,获得积分10
6秒前
落寞寒荷完成签到,获得积分10
7秒前
fly the bike应助莉莉采纳,获得10
7秒前
拟拟发布了新的文献求助10
8秒前
Bo发布了新的文献求助10
8秒前
LCC完成签到 ,获得积分10
8秒前
南乔完成签到,获得积分10
9秒前
yangyang完成签到,获得积分10
9秒前
10秒前
钟是一梦完成签到,获得积分10
10秒前
10秒前
wanci应助Ll采纳,获得10
10秒前
11秒前
11秒前
孟柠柠发布了新的文献求助10
11秒前
青阳完成签到,获得积分10
12秒前
科研狗发布了新的文献求助20
13秒前
14秒前
14秒前
jarenthar完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740