A machine learning algorithm to explore the drivers of carbon emissions in Chinese cities

计算机科学 碳纤维 人工智能 机器学习 算法 复合数
作者
Wenmei Yu,Lina Xia,Qiang Cao
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-75753-y
摘要

As the world's largest energy consumer and carbon emitter, the task of carbon emission reduction is imminent. In order to realize the dual-carbon goal at an early date, it is necessary to study the key factors affecting China's carbon emissions and their non-linear relationships. This paper compares the performance of six machine learning algorithms to that of traditional econometric models in predicting carbon emissions in China from 2011 to 2020 using panel data from 254 cities in China. Specifically, it analyzes the comparative importance of domestic economic, external economic, and policy uncertainty factors as well as the nonparametric relationship between these factors and carbon emissions based on the Extra-trees model. Results show that energy consumption (ENC) remains the root cause of increased carbon emissions among domestic economic factors, although government intervention (GOV) and digital finance (DIG) can significantly reduce it. Next, among the external economic and policy uncertainty factors, foreign direct investment (FDI) and economic policy uncertainty (EPU) are important factors influencing carbon emissions, and the partial dependence plots (PDPs) confirm the pollution haven hypothesis and also reveal the role of EPU in reducing carbon emissions. The heterogeneity of factors affecting carbon emissions is also analyzed under different city sizes, and it is found that ENC is a common driving factor in cities of different sizes, but there are some differences. Finally, appropriate policy recommendations are proposed by us to help China move rapidly towards a green and sustainable development path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佐哥完成签到,获得积分10
刚刚
独特的紫真完成签到,获得积分10
刚刚
领导范儿应助szmsnail采纳,获得30
1秒前
科研小弟发布了新的文献求助10
1秒前
ZZZ完成签到,获得积分10
1秒前
1秒前
ding应助默默的巧荷采纳,获得10
3秒前
fuyuan发布了新的文献求助30
3秒前
思源应助无限无心采纳,获得10
3秒前
3秒前
4秒前
Asuna完成签到,获得积分10
4秒前
陶醉的又夏完成签到 ,获得积分10
6秒前
羊毛毛衣完成签到,获得积分10
6秒前
一隅完成签到 ,获得积分10
6秒前
Song发布了新的文献求助10
6秒前
7秒前
聪明的寒烟完成签到,获得积分10
8秒前
车到山前必有路女士完成签到,获得积分10
8秒前
标致的问晴完成签到,获得积分10
8秒前
9秒前
9秒前
娜娜完成签到,获得积分10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
123应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得30
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
dadigege完成签到,获得积分10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
科研小弟完成签到,获得积分10
10秒前
Auster完成签到,获得积分10
11秒前
落寞觅山完成签到 ,获得积分10
12秒前
再生极强的-涡虫完成签到,获得积分10
12秒前
jyyg发布了新的文献求助10
12秒前
典雅的纸飞机完成签到 ,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167644
求助须知:如何正确求助?哪些是违规求助? 2819109
关于积分的说明 7924992
捐赠科研通 2478979
什么是DOI,文献DOI怎么找? 1320569
科研通“疑难数据库(出版商)”最低求助积分说明 632836
版权声明 602443