A Transformer-Based Gesture Prediction Model via sEMG Sensor for Human–Robot Interaction

变压器 手势 机器人 计算机科学 人机交互 人工智能 手势识别 隐马尔可夫模型 计算机视觉 工程类 语音识别 电压 电气工程
作者
Yanhong Liu,Xingyu Li,Lei Yang,Hongnian Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:8
标识
DOI:10.1109/tim.2024.3373045
摘要

As one of the most direct and pivotal modes of human-computer interaction (HCI), the application of surface electromyography (sEMG) signals in the domain of gesture prediction has emerged as a prominent area of research. To enhance the performance of gesture prediction system based on multi-channel sEMG signals, a novel gesture prediction framework is proposed that (i) Conversion of original biological signals from multi-channel sEMG into two-dimensional time-frequency maps is achieved through the incorporation of continuous wavelet transform (CWT). (ii) For two-dimensional time-frequency map inputs, a Transformer-based classification network that effectively learns local and global context information is proposed, named DIFT-Net, with the goal of implementing sEMG-based gesture prediction for robot interaction. Proposed DIFT-Net employs a dual-branch interactive fusion structure based on the Swin Transformer, enabling effective acquisition of global contextual information and local details. Additionally, an attention guidance module (AGM) and an attentional interaction module (AIM) are proposed to guide network feature extraction and fusion processes in proposed DIFT-Net. The AGM module takes intermediate features from the same stage of both branches as input and guides the network to extract more localized and detailed features through convolutional attention. Meanwhile, the AIM module integrates output features from both branches to enhance the aggregation of global context information across various scales. To substantiate the efficacy of DIFT-Net, a multi-channel EMG bracelet is utilized to collect and construct an sEMG signal dataset. Experimental results demonstrate that the proposed DIFT-Net attains an accuracy of 98.36% in self-built dataset and 82.64% accuracy on the public Nanapro DB1 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高菠萝完成签到 ,获得积分10
刚刚
刚刚
小赵发布了新的文献求助10
1秒前
科目三应助美味的薯片采纳,获得10
1秒前
1秒前
qizhia完成签到,获得积分10
1秒前
甜味白开水完成签到,获得积分10
3秒前
无误发布了新的文献求助10
3秒前
3秒前
汉堡包应助娃哈哈采纳,获得10
4秒前
qizhia发布了新的文献求助10
5秒前
陈文文完成签到 ,获得积分10
5秒前
今后应助好学的猪采纳,获得10
6秒前
秘小先儿完成签到,获得积分10
6秒前
阳光无声完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
王浩宇关注了科研通微信公众号
8秒前
9秒前
zihanwang应助酷酷海豚采纳,获得10
9秒前
科研狗完成签到,获得积分10
9秒前
10秒前
腾桑发布了新的文献求助10
10秒前
lin完成签到,获得积分20
11秒前
李某某完成签到,获得积分10
11秒前
书亚发布了新的文献求助10
12秒前
东东呀发布了新的文献求助10
13秒前
13秒前
14秒前
Ammon发布了新的文献求助10
15秒前
Www发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
每㐬山风关注了科研通微信公众号
19秒前
WHHW完成签到,获得积分10
19秒前
西西里柠檬发布了新的文献求助100
19秒前
英姑应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070