亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Transformer-Based Gesture Prediction Model via sEMG Sensor for Human–Robot Interaction

变压器 手势 机器人 计算机科学 人机交互 人工智能 手势识别 隐马尔可夫模型 计算机视觉 工程类 语音识别 电压 电气工程
作者
Yanhong Liu,Xingyu Li,Lei Yang,Hongnian Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:6
标识
DOI:10.1109/tim.2024.3373045
摘要

As one of the most direct and pivotal modes of human-computer interaction (HCI), the application of surface electromyography (sEMG) signals in the domain of gesture prediction has emerged as a prominent area of research. To enhance the performance of gesture prediction system based on multi-channel sEMG signals, a novel gesture prediction framework is proposed that (i) Conversion of original biological signals from multi-channel sEMG into two-dimensional time-frequency maps is achieved through the incorporation of continuous wavelet transform (CWT). (ii) For two-dimensional time-frequency map inputs, a Transformer-based classification network that effectively learns local and global context information is proposed, named DIFT-Net, with the goal of implementing sEMG-based gesture prediction for robot interaction. Proposed DIFT-Net employs a dual-branch interactive fusion structure based on the Swin Transformer, enabling effective acquisition of global contextual information and local details. Additionally, an attention guidance module (AGM) and an attentional interaction module (AIM) are proposed to guide network feature extraction and fusion processes in proposed DIFT-Net. The AGM module takes intermediate features from the same stage of both branches as input and guides the network to extract more localized and detailed features through convolutional attention. Meanwhile, the AIM module integrates output features from both branches to enhance the aggregation of global context information across various scales. To substantiate the efficacy of DIFT-Net, a multi-channel EMG bracelet is utilized to collect and construct an sEMG signal dataset. Experimental results demonstrate that the proposed DIFT-Net attains an accuracy of 98.36% in self-built dataset and 82.64% accuracy on the public Nanapro DB1 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的谷芹完成签到,获得积分20
4秒前
逆天大脚发布了新的文献求助20
20秒前
22秒前
田様应助逆天大脚采纳,获得10
40秒前
58秒前
爆米花应助西米采纳,获得10
1分钟前
1分钟前
西米发布了新的文献求助10
1分钟前
1分钟前
qq1083716237应助爱笑的栀虞采纳,获得20
1分钟前
就叫希望吧完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
深情安青应助有热心愿意采纳,获得10
2分钟前
2分钟前
3分钟前
Jack发布了新的文献求助10
3分钟前
细腻雨莲发布了新的文献求助10
3分钟前
3分钟前
淡淡忆之发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
有热心愿意完成签到,获得积分10
4分钟前
4分钟前
淡淡忆之完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
koh完成签到,获得积分10
6分钟前
今后应助Jack采纳,获得10
6分钟前
CXE发布了新的文献求助10
6分钟前
lyqs215发布了新的文献求助20
6分钟前
田様应助CXE采纳,获得10
6分钟前
孟寐以求完成签到 ,获得积分10
6分钟前
7分钟前
ling361完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335334
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447401
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974