Multi-fidelity deep learning for aerodynamic shape optimization using convolutional neural network

物理 卷积神经网络 空气动力学 人工神经网络 深度学习 人工智能 航空航天工程 机械 计算机科学 工程类
作者
Guocheng Tao,Chengwei Fan,Wen Wang,Wenjun Guo,Jiahuan Cui
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (5) 被引量:1
标识
DOI:10.1063/5.0205780
摘要

Aerodynamic shape design is essential for improving aircraft performance and efficiency. First, this study introduces a data-driven optimization framework utilizing a multi-fidelity convolutional neural network (MFCNN) for aerodynamic shape optimization. To achieve better optimization results with reduced computational cost, the framework dynamically incorporates new data in each optimization cycle. Specifically, it constantly involves the optimal solution from previous cycle as a new high-fidelity sample and employs a low-fidelity infilling strategy that maximizes the minimum Euclidean distance for selecting new low-fidelity samples. Moreover, a standard synthetic benchmark is used to elaborate the procedure of optimization and show the capability and effectiveness of the framework. Finally, the framework is applied to two aerodynamic shape optimization problems: maximizing the lift-to-drag ratio for the Royal Aircraft Establishment 2822 (RAE2822) airfoils and minimizing the cruise drag coefficient for the three-dimensional (3D) drooped and scarfed non-axisymmetric nacelles. The framework increases the lift-to-drag ratio by 51.21% over the baseline and achieves an 18.79% reduction in the cruise drag coefficient for nacelle optimization, outperforming traditional multi-fidelity deep neural network optimization framework. Sufficiently utilizing the implicit relations between different fidelity levels of data through defined local perceptual fields and convolution, our MFCNN-based optimization framework signifies a step forward in the efficiency and accuracy of aerodynamic shape optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想发sci完成签到,获得积分10
1秒前
1秒前
12234hao发布了新的文献求助10
2秒前
3秒前
科研狗完成签到,获得积分10
4秒前
4秒前
四火yi完成签到,获得积分10
4秒前
TK发布了新的文献求助10
7秒前
7秒前
四火yi发布了新的文献求助10
8秒前
10秒前
甜味白开水完成签到,获得积分10
10秒前
11秒前
Eden发布了新的文献求助10
11秒前
包子完成签到,获得积分10
13秒前
Jasper应助皮崇知采纳,获得10
14秒前
15秒前
17秒前
Chenly完成签到,获得积分10
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
东木应助科研通管家采纳,获得20
18秒前
英姑应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432