FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification

激光雷达 计算机科学 高光谱成像 人工智能 多光谱图像 特征提取 特征(语言学) 土地覆盖 传感器融合 模式识别(心理学) 背景(考古学) 遥感 土地利用 地理 土木工程 哲学 工程类 考古 语言学
作者
Satyam Mohla,Shivam Pande,Biplab Banerjee,Subhasis Chaudhuri
标识
DOI:10.1109/cvprw50498.2020.00054
摘要

With recent advances in sensing, multimodal data is becoming easily available for various applications, especially in remote sensing (RS), where many data types like multispectral imagery (MSI), hyperspectral imagery (HSI), LiDAR etc. are available. Effective fusion of these multisource datasets is becoming important, for these multimodality features have been shown to generate highly accurate land-cover maps. However, fusion in the context of RS is non-trivial considering the redundancy involved in the data and the large domain differences among multiple modalities. In addition, the feature extraction modules for different modalities hardly interact among themselves, which further limits their semantic relatedness. As a remedy, we propose a feature fusion and extraction framework, namely FusAtNet, for collective land-cover classification of HSIs and LiDAR data in this paper. The proposed framework effectively utilizses HSI modality to generate an attention map using "self-attention" mechanism that highlights its own spectral features. Similarly, a "cross-attention" approach is simultaneously used to harness the LiDAR derived attention map that accentuates the spatial features of HSI. These attentive spectral and spatial representations are then explored further along with the original data to obtain modality-specific feature embeddings. The modality oriented joint spectro-spatial information thus obtained, is subsequently utilized to carry out the land-cover classification task. Experimental evaluations on three HSILiDAR datasets show that the proposed method achieves the state-of-the-art classification performance, including on the largest HSI-LiDAR dataset available, University of Houston (Data Fusion Contest - 2013), opening new avenues in multimodal feature fusion for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
3秒前
4秒前
WXY发布了新的文献求助30
4秒前
科研通AI5应助曦子曦子采纳,获得10
4秒前
欢呼谷冬发布了新的文献求助10
5秒前
kx发布了新的文献求助10
5秒前
6秒前
6秒前
谨言发布了新的文献求助10
7秒前
7秒前
cnas完成签到,获得积分10
7秒前
klandcy完成签到,获得积分10
7秒前
白居易发布了新的文献求助10
8秒前
Yutound完成签到 ,获得积分10
8秒前
Ava应助虚幻的一一采纳,获得10
8秒前
NexusExplorer应助YY采纳,获得10
9秒前
凯凯完成签到,获得积分10
9秒前
SciGPT应助巧克力大王采纳,获得10
10秒前
LL完成签到,获得积分20
10秒前
11秒前
科研通AI2S应助uni采纳,获得10
11秒前
科研通AI5应助ss采纳,获得10
11秒前
呆啊发布了新的文献求助10
11秒前
温酒随行完成签到,获得积分10
11秒前
12秒前
12秒前
今后应助liusx123采纳,获得10
12秒前
12秒前
13秒前
星辰大海应助超文献采纳,获得10
13秒前
13秒前
长安完成签到,获得积分20
14秒前
peekaboo完成签到,获得积分10
15秒前
15秒前
zmy发布了新的文献求助10
15秒前
16秒前
lxd应助kiki采纳,获得20
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199