A multi-scale model for local polarization prediction in flow batteries based on deep neural network

极化(电化学) 人工神经网络 浓差极化 维数之咒 计算机科学 材料科学 网络模型 人工智能 模拟 化学 生物化学 物理化学
作者
Yansong Luo,Wenrui Lv,Menglian Zheng
出处
期刊:Journal of energy storage [Elsevier]
卷期号:68: 107842-107842 被引量:5
标识
DOI:10.1016/j.est.2023.107842
摘要

The side reaction of the flow battery will consume electrons, reduce efficiency, and eventually cause safety problems. Regarding gas management and removal, carefully controlling local over-polarization is a vital issue. However, among the multi-scale models that can predict local polarization, the lack of dimensionality inside the electrode makes it impractical to predict three-dimensional variations. In this work, we propose a three-dimensional multi-scale model that allows the rapid prediction of local polarization, which cooperates with deep neural networks, the pore network model, and the three-dimensional continuum model to have both the advantages of accuracy and extensibility. Parameters such as the porosity, permeability, and specific surface area of the electrode are calculated from 500 randomly generated microstructures, and the training samples for the deep neural network are calculated by the cell-scale model and pore-scale model. Through the developed model, we explore the effects of the interdigitated flow field, variable flow rate optimization strategies, and diverse operating conditions on local polarization. The results show that the proposed model can accurately predict local polarization. The research directions of future work include the collaborative optimization of the electrode's microstructure, the flow field, and the flow rate to ultimately improve the local polarization uniformity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木雨发布了新的文献求助10
1秒前
鬲木发布了新的文献求助10
1秒前
mao12wang发布了新的文献求助10
1秒前
L坨坨完成签到 ,获得积分10
1秒前
耿强发布了新的文献求助10
1秒前
jmy发布了新的文献求助10
2秒前
科研小黑子完成签到,获得积分20
2秒前
2秒前
苏尔完成签到,获得积分10
2秒前
2秒前
浅墨完成签到 ,获得积分10
2秒前
mony完成签到,获得积分10
2秒前
3秒前
3秒前
huizi发布了新的文献求助10
3秒前
4秒前
菠萝冰棒发布了新的文献求助10
4秒前
4秒前
请叫我风吹麦浪完成签到,获得积分0
4秒前
清爽雪枫发布了新的文献求助10
5秒前
5秒前
5秒前
李健应助斜杠武采纳,获得10
6秒前
fengxj完成签到 ,获得积分10
6秒前
6秒前
6秒前
七七给七七的求助进行了留言
6秒前
7秒前
7秒前
Hello应助冷静的平安采纳,获得10
7秒前
FKVB_完成签到 ,获得积分10
8秒前
饼饼完成签到,获得积分10
8秒前
天天快乐应助木木采纳,获得10
8秒前
艺玲发布了新的文献求助10
8秒前
大气飞丹发布了新的文献求助10
8秒前
丫丫完成签到,获得积分10
9秒前
科研通AI2S应助觅桃乌龙采纳,获得10
9秒前
耿强完成签到,获得积分10
9秒前
wanci应助dd采纳,获得10
10秒前
汉堡包应助cuihl123采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759