A multi-scale model for local polarization prediction in flow batteries based on deep neural network

极化(电化学) 人工神经网络 浓差极化 维数之咒 计算机科学 材料科学 网络模型 人工智能 模拟 化学 生物化学 物理化学
作者
Yansong Luo,Wenrui Lv,Menglian Zheng
出处
期刊:Journal of energy storage [Elsevier]
卷期号:68: 107842-107842 被引量:5
标识
DOI:10.1016/j.est.2023.107842
摘要

The side reaction of the flow battery will consume electrons, reduce efficiency, and eventually cause safety problems. Regarding gas management and removal, carefully controlling local over-polarization is a vital issue. However, among the multi-scale models that can predict local polarization, the lack of dimensionality inside the electrode makes it impractical to predict three-dimensional variations. In this work, we propose a three-dimensional multi-scale model that allows the rapid prediction of local polarization, which cooperates with deep neural networks, the pore network model, and the three-dimensional continuum model to have both the advantages of accuracy and extensibility. Parameters such as the porosity, permeability, and specific surface area of the electrode are calculated from 500 randomly generated microstructures, and the training samples for the deep neural network are calculated by the cell-scale model and pore-scale model. Through the developed model, we explore the effects of the interdigitated flow field, variable flow rate optimization strategies, and diverse operating conditions on local polarization. The results show that the proposed model can accurately predict local polarization. The research directions of future work include the collaborative optimization of the electrode's microstructure, the flow field, and the flow rate to ultimately improve the local polarization uniformity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
迷你的博超完成签到,获得积分10
2秒前
活泼又晴完成签到,获得积分10
2秒前
凰年发布了新的文献求助10
2秒前
刻苦从阳完成签到,获得积分10
2秒前
2秒前
852应助如沐风采纳,获得10
3秒前
要开心完成签到,获得积分10
3秒前
昏睡的铅笔完成签到,获得积分10
4秒前
orixero应助xiu采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
6秒前
Laurel发布了新的文献求助30
6秒前
6秒前
Vizz发布了新的文献求助10
6秒前
HAHAHA完成签到 ,获得积分10
6秒前
1234发布了新的文献求助30
7秒前
7秒前
RIYUCE完成签到,获得积分10
8秒前
LSD完成签到,获得积分10
9秒前
10秒前
10秒前
酷酷银耳汤完成签到,获得积分20
10秒前
11秒前
12秒前
坦率初柔发布了新的文献求助10
12秒前
13秒前
13秒前
Ava应助Vizz采纳,获得10
14秒前
Ash发布了新的文献求助10
14秒前
wqt发布了新的文献求助10
14秒前
15秒前
我心向明月完成签到,获得积分10
15秒前
xiu发布了新的文献求助10
15秒前
16秒前
我是老大应助酷酷银耳汤采纳,获得10
16秒前
16秒前
fchwpo发布了新的文献求助10
17秒前
17秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070024
求助须知:如何正确求助?哪些是违规求助? 2724039
关于积分的说明 7483616
捐赠科研通 2371113
什么是DOI,文献DOI怎么找? 1257302
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879