Spatiotemporal causal convolutional network for forecasting hourly PM2.5 concentrations in Beijing, China

北京 卷积神经网络 环境科学 计算机科学 空气质量指数 气象学 人工神经网络 深度学习 中国 污染 数据挖掘 人工智能 地理 生态学 生物 考古
作者
Lei Zhang,Jiaming Na,Jie Zhu,Zhikuan Shi,Changxin Zou,Lin Yang
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104869-104869 被引量:45
标识
DOI:10.1016/j.cageo.2021.104869
摘要

Air pollution in Northeastern Asia is a serious environmental problem, especially in China where PM2.5 levels are quite high. Accurate PM2.5 predictions are significant to environmental management and human health. Recently, deep learning has received increasing attention from relevant researchers. In this work, a spatiotemporal causal convolutional neural network (ST-CausalConvNet) for short-term PM2.5 prediction is proposed. The distinguishing characteristics of the proposed model is that the convolutions in the model architecture are causal, where an output at a certain time step is convolved only with elements from the same or earlier time steps in the previous layer. Accordingly, no information leakage is induced from the future to the past in this model. The spatial dependence between multiple monitoring stations was also considered in the model. Spatiotemporal correlation analysis was performed to select relevant information from monitoring stations that have a high relationship with the target station. The information from the target and related stations were then employed as the inputs and fed into the model. A case study from May 1, 2014 to April 30, 2015 in Beijing, China was conducted. The next hour PM2.5 concentration was predicted by the proposed model by using historical air quality and meteorological data from 36 monitoring stations. Experimental results show that the trends of the predicted PM2.5 concentrations and the observed values were consistent. The proposed method achieved a better prediction performance than the other three comparative models, namely artificial neural network (ANN), gated recurrent unit (GRU), and long short-term memory (LSTM). Furthermore, the effects of the important parameters and the model transferability were also conducted. We conclude that the proposed ST-CausalConvNet is a potential effective model for air pollution forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edsenone发布了新的文献求助10
1秒前
2秒前
我是老大应助Jiangnj采纳,获得10
2秒前
在水一方应助李紫硕采纳,获得10
3秒前
一个左正蹬完成签到,获得积分10
3秒前
sxc发布了新的文献求助10
3秒前
霍旭芳完成签到,获得积分10
4秒前
4秒前
科研发布了新的文献求助10
4秒前
5秒前
zjl留下了新的社区评论
5秒前
6秒前
凌波漫步发布了新的文献求助30
6秒前
yoke完成签到,获得积分10
7秒前
123发布了新的文献求助10
9秒前
9秒前
isabellae完成签到,获得积分10
9秒前
所所应助不安秋荷采纳,获得10
9秒前
10秒前
念心完成签到,获得积分10
11秒前
星辰大海应助球球采纳,获得10
11秒前
所所应助李紫硕采纳,获得10
11秒前
11秒前
11秒前
12秒前
酷炫皮皮虾完成签到,获得积分10
12秒前
的的的的的完成签到,获得积分10
12秒前
莫寻双发布了新的文献求助10
13秒前
汉堡包应助fwt采纳,获得10
13秒前
charlotte发布了新的文献求助10
14秒前
领导范儿应助迅哥采纳,获得10
14秒前
14秒前
秃头医生完成签到,获得积分10
14秒前
15秒前
ppc524发布了新的文献求助10
16秒前
琼琼子发布了新的文献求助10
17秒前
Doraemon1314完成签到,获得积分10
17秒前
房东家的猫完成签到,获得积分10
18秒前
隐形曼青应助towanda采纳,获得10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143605
求助须知:如何正确求助?哪些是违规求助? 2795002
关于积分的说明 7813063
捐赠科研通 2451122
什么是DOI,文献DOI怎么找? 1304258
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601386