Venlafaxine XR treatment for older patients with major depressive disorder: decision trees for when to change treatment

文拉法辛 重性抑郁障碍 抗抑郁药 假阳性悖论 医学 精神科 决策树 切点 萧条(经济学) 心理学 心情 数据挖掘 焦虑 统计 宏观经济学 经济 计算机科学 数学
作者
Helena Kyunghee Kim,Daniel M Blumberger,Jordan F Karp,Eric Lenze,Charles F Reynolds,Benoit H Mulsant
出处
期刊:Evidence-based Mental Health [BMJ]
卷期号:: ebmental-300479
标识
DOI:10.1136/ebmental-2022-300479
摘要

Predictors of antidepressant response in older patients with major depressive disorder (MDD) need to be confirmed before they can guide treatment.To create decision trees for early identification of older patients with MDD who are unlikely to respond to 12 weeks of antidepressant treatment, we analysed data from 454 older participants treated with venlafaxine XR (150-300 mg/day) for up to 12 weeks in the Incomplete Response in Late-Life Depression: Getting to Remission study.We selected the earliest decision point when we could detect participants who had not yet responded (defined as >50% symptom improvement) but would do so after 12 weeks of treatment. Using receiver operating characteristic models, we created two decision trees to minimise either false identification of future responders (false positives) or false identification of future non-responders (false negatives). These decision trees integrated baseline characteristics and treatment response at the early decision point as predictors.We selected week 4 as the optimal early decision point. Both decision trees shared minimal symptom reduction at week 4, longer episode duration and not having responded to an antidepressant previously as predictors of non-response. Test negative predictive values of the leftmost terminal node of the two trees were 77.4% and 76.6%, respectively.Our decision trees have the potential to guide treatment in older patients with MDD but they require to be validated in other larger samples.Once confirmed, our findings may be used to guide changes in antidepressant treatment in older patients with poor early response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏来应助yym采纳,获得10
1秒前
科目三应助畅快山兰采纳,获得10
2秒前
酷波er应助小星星采纳,获得10
3秒前
小桔青山完成签到,获得积分10
5秒前
Akim应助笑面客采纳,获得10
6秒前
7秒前
了然完成签到,获得积分10
7秒前
7秒前
wsx4321应助蓝桉采纳,获得10
9秒前
9秒前
Wei发布了新的文献求助10
10秒前
10秒前
juejue333完成签到,获得积分10
11秒前
Hello应助BERT采纳,获得10
11秒前
114555发布了新的文献求助10
12秒前
淡定亦云完成签到,获得积分10
13秒前
NexusExplorer应助痴情的博超采纳,获得10
13秒前
科研通AI5应助啊啊采纳,获得10
14秒前
整齐红酒完成签到,获得积分10
14秒前
LIU完成签到 ,获得积分10
14秒前
天天快乐应助nanami采纳,获得10
15秒前
俞若枫完成签到,获得积分10
15秒前
lili-发布了新的文献求助10
15秒前
15秒前
沈小葵发布了新的文献求助10
17秒前
18秒前
20秒前
kingwill应助迷你的菲鹰采纳,获得20
20秒前
南桑发布了新的文献求助10
22秒前
23秒前
wanci应助M二十四采纳,获得10
23秒前
TBI发布了新的文献求助30
24秒前
24秒前
25秒前
无奈曼云完成签到,获得积分10
26秒前
ding应助南桑采纳,获得10
26秒前
深情安青应助沈小葵采纳,获得10
26秒前
李健的小迷弟应助Ww采纳,获得10
26秒前
ding应助小白采纳,获得10
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762991
求助须知:如何正确求助?哪些是违规求助? 3307497
关于积分的说明 10140083
捐赠科研通 3022626
什么是DOI,文献DOI怎么找? 1659171
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754957