Venlafaxine XR treatment for older patients with major depressive disorder: decision trees for when to change treatment

文拉法辛 重性抑郁障碍 抗抑郁药 假阳性悖论 医学 精神科 决策树 切点 萧条(经济学) 心理学 心情 数据挖掘 焦虑 统计 宏观经济学 经济 计算机科学 数学
作者
Helena Kyunghee Kim,Daniel M Blumberger,Jordan F Karp,Eric Lenze,Charles F Reynolds,Benoit H Mulsant
出处
期刊:Evidence-based Mental Health [BMJ]
卷期号:: ebmental-300479
标识
DOI:10.1136/ebmental-2022-300479
摘要

Predictors of antidepressant response in older patients with major depressive disorder (MDD) need to be confirmed before they can guide treatment.To create decision trees for early identification of older patients with MDD who are unlikely to respond to 12 weeks of antidepressant treatment, we analysed data from 454 older participants treated with venlafaxine XR (150-300 mg/day) for up to 12 weeks in the Incomplete Response in Late-Life Depression: Getting to Remission study.We selected the earliest decision point when we could detect participants who had not yet responded (defined as >50% symptom improvement) but would do so after 12 weeks of treatment. Using receiver operating characteristic models, we created two decision trees to minimise either false identification of future responders (false positives) or false identification of future non-responders (false negatives). These decision trees integrated baseline characteristics and treatment response at the early decision point as predictors.We selected week 4 as the optimal early decision point. Both decision trees shared minimal symptom reduction at week 4, longer episode duration and not having responded to an antidepressant previously as predictors of non-response. Test negative predictive values of the leftmost terminal node of the two trees were 77.4% and 76.6%, respectively.Our decision trees have the potential to guide treatment in older patients with MDD but they require to be validated in other larger samples.Once confirmed, our findings may be used to guide changes in antidepressant treatment in older patients with poor early response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anyunyi发布了新的文献求助10
1秒前
传奇3应助huiwanfeifei采纳,获得10
2秒前
666完成签到,获得积分10
2秒前
文静的电灯胆完成签到,获得积分10
4秒前
4秒前
辛夷完成签到,获得积分10
5秒前
冷酷的枕头完成签到,获得积分10
6秒前
左囧完成签到,获得积分10
7秒前
lerrygg发布了新的文献求助40
7秒前
7秒前
7秒前
ding应助Velar采纳,获得10
8秒前
gcc应助沉醉采纳,获得50
10秒前
莫漓漓完成签到 ,获得积分10
10秒前
CyberHamster完成签到,获得积分10
10秒前
10秒前
cc驳回了orixero应助
11秒前
wanci应助乐观寻雪采纳,获得10
12秒前
13秒前
Takk发布了新的文献求助10
13秒前
小蘑菇应助AptRank采纳,获得10
14秒前
jkhjkhj完成签到,获得积分10
15秒前
。。完成签到,获得积分20
16秒前
冰凌心恋完成签到,获得积分10
17秒前
19秒前
阿旭完成签到 ,获得积分10
19秒前
Velar发布了新的文献求助10
19秒前
Jasper应助Takk采纳,获得10
21秒前
拾遗就是我完成签到,获得积分10
21秒前
露珠完成签到,获得积分20
21秒前
22秒前
anyunyi发布了新的文献求助10
24秒前
晶晶完成签到,获得积分10
25秒前
炸药发布了新的文献求助10
27秒前
Velar完成签到,获得积分10
27秒前
30秒前
所所应助Angelie采纳,获得10
31秒前
明理采珊完成签到,获得积分10
32秒前
33秒前
anyunyi发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465571
求助须知:如何正确求助?哪些是违规求助? 3058673
关于积分的说明 9062670
捐赠科研通 2749045
什么是DOI,文献DOI怎么找? 1508274
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696544