Fast and Reliable Score-Based Generative Model for Parallel MRI

生成模型 计算机科学 机器学习 人工智能 生成语法
作者
Ruizhi Hou,Fang Li,Tieyong Zeng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2023.3333538
摘要

The score-based generative model (SGM) can generate high-quality samples, which have been successfully adopted for magnetic resonance imaging (MRI) reconstruction. However, the recent SGMs may take thousands of steps to generate a high-quality image. Besides, SGMs neglect to exploit the redundancy in k space. To overcome the above two drawbacks, in this article, we propose a fast and reliable SGM (FRSGM). First, we propose deep ensemble denoisers (DEDs) consisting of SGM and the deep denoiser, which are used to solve the proximal problem of the implicit regularization term. Second, we propose a spatially adaptive self-consistency (SASC) term as the regularization term of the k -space data. We use the alternating direction method of multipliers (ADMM) algorithm to solve the minimization model of compressed sensing (CS)-MRI incorporating the image prior term and the SASC term, which is significantly faster than the related works based on SGM. Meanwhile, we can prove that the iterating sequence of the proposed algorithm has a unique fixed point. In addition, the DED and the SASC term can significantly improve the generalization ability of the algorithm. The features mentioned above make our algorithm reliable, including the fixed-point convergence guarantee, the exploitation of the k space, and the powerful generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
So发布了新的文献求助20
2秒前
念舍离发布了新的文献求助10
2秒前
3秒前
5秒前
lili发布了新的文献求助10
5秒前
pluto应助灵巧的青烟采纳,获得10
5秒前
个性凡儿发布了新的文献求助10
7秒前
7秒前
个性凡儿完成签到,获得积分10
12秒前
Owen应助jam采纳,获得10
13秒前
14秒前
15秒前
金色闪光完成签到 ,获得积分10
15秒前
16秒前
乾明少侠完成签到 ,获得积分10
16秒前
16秒前
嗨好发布了新的文献求助10
18秒前
向晨发布了新的文献求助10
19秒前
wwt发布了新的文献求助10
20秒前
闪闪糖豆发布了新的文献求助10
21秒前
科研通AI2S应助冷艳的一区采纳,获得10
23秒前
阿桂发布了新的文献求助10
24秒前
黄黄黄发布了新的文献求助10
24秒前
蓝色花生豆完成签到,获得积分10
25秒前
念舍离发布了新的文献求助10
25秒前
26秒前
NexusExplorer应助Rachel采纳,获得30
26秒前
27秒前
王二完成签到,获得积分10
27秒前
xiaoyi驳回了大个应助
30秒前
30秒前
科研小趴菜完成签到,获得积分10
31秒前
欣喜唇彩发布了新的文献求助10
32秒前
所所应助lc采纳,获得10
32秒前
橓顺给橓顺的求助进行了留言
33秒前
34秒前
黄黄黄完成签到,获得积分20
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243037
求助须知:如何正确求助?哪些是违规求助? 2887097
关于积分的说明 8246502
捐赠科研通 2555694
什么是DOI,文献DOI怎么找? 1383806
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631