放气
抵抗
极紫外光刻
极端紫外线
材料科学
平版印刷术
薄脆饼
氢
光学
纳米技术
光电子学
化学
物理
激光器
有机化学
图层(电子)
作者
Eishi Shiobara,Shinji Mikami,Kenji Yamada
摘要
The metal containing resist is one of the strong candidates for high lithographic performance Extreme Ultraviolet (EUV) resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation [2]. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [3, 4]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing in hydrogen, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. We are considering a new platform of outgas testing for metal containing resists based on the electron-beam irradiation system as one of the solutions for these issues. The concept is presented in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI