量子级联激光器
探测器
级联
激光器
光电子学
分光计
光谱学
材料科学
红外线的
化学
光学
分析化学(期刊)
物理
色谱法
量子力学
作者
Alicja Dabrowska,Mauro David,Stephan Freitag,A. M. Andrews,G. Strasser,Borislav Hinkov,Andreas Schwaighofer,Bernhard Lendl
标识
DOI:10.1016/j.snb.2021.130873
摘要
Mid-infrared chemical sensors based on quantum cascade technology offer a number of properties surpassing conventional spectrometric techniques. In this work, we combine a tunable quantum cascade laser with a spectrally tailored in-house fabricated quantum cascade detector (QCD) to realize broadband detection of aqueous samples for selective sensing of bovine milk proteins. The developed setup enables broadband spectroscopy covering more than 260 cm−1 and was employed to record absorbance spectra of the amide I and amide II bands of β-lactoglobulin, α-lactalbumin and casein. A detailed comparison indicates similar performance of the laser-based setup with its uncooled QCD as a high-end FTIR spectrometer equipped with a liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector. Furthermore, we discuss the characteristics and benefits of the quantum cascade detector for application in laser-based mid-infrared sensor systems and compare its performance to other common mid-infrared detector types. In conclusion, the combination of QCDs with EC-QCLs opens up new possibilities for next-generation MIR liquid-phase chemical sensors featuring low noise and high dynamic range.
科研通智能强力驱动
Strongly Powered by AbleSci AI