Extracting and composing robust features with denoising autoencoders

计算机科学 判别式 人工智能 水准点(测量) 生成语法 模式识别(心理学) 透视图(图形) 无监督学习 深度学习 代表(政治) 一套 特征学习 机器学习 降噪 政治 历史 政治学 大地测量学 考古 法学 地理
作者
Pascal Vincent,Hugo Larochelle,Yoshua Bengio,Pierre-Antoine Manzagol
出处
期刊:International Conference on Machine Learning 卷期号:: 1096-1103 被引量:6787
标识
DOI:10.1145/1390156.1390294
摘要

Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to useful intermediate representations. We introduce and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern. This approach can be used to train autoencoders, and these denoising autoencoders can be stacked to initialize deep architectures. The algorithm can be motivated from a manifold learning and information theoretic perspective or from a generative model perspective. Comparative experiments clearly show the surprising advantage of corrupting the input of autoencoders on a pattern classification benchmark suite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangsuyun发布了新的文献求助10
刚刚
SYLH应助lx采纳,获得10
刚刚
anan_0528完成签到 ,获得积分10
刚刚
晓军发布了新的文献求助10
刚刚
李双艳发布了新的文献求助10
刚刚
wddddd完成签到,获得积分10
1秒前
1秒前
1秒前
感动的世平完成签到,获得积分10
3秒前
可爱的函函应助一一采纳,获得10
3秒前
3秒前
zhu完成签到,获得积分10
4秒前
俏皮的龙猫完成签到 ,获得积分10
4秒前
4秒前
SciGPT应助认真的一刀采纳,获得10
4秒前
5秒前
5秒前
甲基正离子完成签到,获得积分10
6秒前
hzl完成签到,获得积分10
6秒前
Lam完成签到,获得积分10
6秒前
大白发布了新的文献求助10
6秒前
6秒前
李爱国应助Hu采纳,获得10
7秒前
7秒前
小欧医生完成签到,获得积分10
7秒前
8秒前
8秒前
老肥完成签到,获得积分10
9秒前
易安发布了新的文献求助10
9秒前
洋洋洋完成签到,获得积分10
9秒前
9秒前
冷傲迎梦发布了新的文献求助10
10秒前
10秒前
Agernon应助晓军采纳,获得10
10秒前
小夭发布了新的文献求助10
11秒前
无聊的翠芙完成签到,获得积分10
11秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678