计算机科学
判别式
人工智能
水准点(测量)
生成语法
模式识别(心理学)
透视图(图形)
无监督学习
深度学习
代表(政治)
一套
特征学习
机器学习
降噪
政治
历史
政治学
大地测量学
考古
法学
地理
作者
Pascal Vincent,Hugo Larochelle,Yoshua Bengio,Pierre-Antoine Manzagol
出处
期刊:International Conference on Machine Learning
日期:2008-01-01
卷期号:: 1096-1103
被引量:6787
标识
DOI:10.1145/1390156.1390294
摘要
Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to useful intermediate representations. We introduce and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern. This approach can be used to train autoencoders, and these denoising autoencoders can be stacked to initialize deep architectures. The algorithm can be motivated from a manifold learning and information theoretic perspective or from a generative model perspective. Comparative experiments clearly show the surprising advantage of corrupting the input of autoencoders on a pattern classification benchmark suite.
科研通智能强力驱动
Strongly Powered by AbleSci AI