已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting autism spectrum disorder using maternal risk factors: A multi-center machine learning study

自闭症谱系障碍 队列 逻辑回归 队列研究 心理学 医学 自闭症 机器学习 儿科 精神科 计算机科学 内科学
作者
Qiuhong Wei,Yuanjie Xiao,Ting Yang,Jie Chen,Li Chen,Ke Wang,Jie Zhang,Ling Li,Fei‐Yong Jia,Lijie Wu,Yan Hao,Xiaoyan Ke,Mingji Yi,Hong Qi,Jinjin Chen,Shuanfeng Fang,Yichao Wang,Qi Wang,Chunhua Jin,Ximing Xu,Tingyu Li
出处
期刊:Psychiatry Research-neuroimaging [Elsevier]
卷期号:334: 115789-115789
标识
DOI:10.1016/j.psychres.2024.115789
摘要

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex environmental etiology involving maternal risk factors, which have been combined with machine learning to predict ASD. However, limited studies have considered the factors throughout preconception, perinatal, and postnatal periods, and even fewer have been conducted in multi-center. In this study, five predictive models were developed using 57 maternal risk factors from a cohort across ten cities (ASD:1232, typically developing[TD]: 1090). The extreme gradient boosting model performed best, achieving an accuracy of 66.2 % on the external cohort from three cities (ASD:266, TD:353). The most important risk factors were identified as unstable emotions and lack of multivitamin supplementation using Shapley values. ASD risk scores were calculated based on predicted probabilities from the optimal model and divided into low, medium, and high-risk groups. The logistic analysis indicated that the high-risk group had a significantly increased risk of ASD compared to the low-risk group. Our study demonstrated the potential of machine learning models in predicting the risk for ASD based on maternal factors. The developed model provided insights into the maternal emotion and nutrition factors associated with ASD and highlighted the potential clinical applicability of the developed model in identifying high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
汉堡包应助shenkekeyan采纳,获得10
2秒前
hyx-dentist发布了新的文献求助10
3秒前
3秒前
舒适逊发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助hyx-dentist采纳,获得10
9秒前
zzz发布了新的文献求助10
9秒前
康2000发布了新的文献求助10
10秒前
燊yy发布了新的文献求助10
11秒前
李健的粉丝团团长应助lyc采纳,获得10
13秒前
Ava应助junjun采纳,获得10
16秒前
虞美人完成签到 ,获得积分10
17秒前
wanci应助hcl采纳,获得10
19秒前
20秒前
香蕉觅云应助燊yy采纳,获得10
20秒前
CipherSage应助梦璃安采纳,获得10
21秒前
无情的匪完成签到 ,获得积分10
22秒前
22秒前
23秒前
酷酷冰之完成签到,获得积分10
23秒前
康2000完成签到,获得积分10
24秒前
46464发布了新的文献求助10
26秒前
共享精神应助zzjj采纳,获得10
28秒前
小蘑菇应助kls采纳,获得10
29秒前
等风完成签到,获得积分10
32秒前
lf-leo完成签到,获得积分10
33秒前
34秒前
35秒前
田様应助乖乖采纳,获得50
37秒前
JamesPei应助DAKE采纳,获得10
38秒前
song完成签到,获得积分10
39秒前
39秒前
40秒前
kls发布了新的文献求助10
40秒前
学不完也学不会完成签到,获得积分10
42秒前
43秒前
43秒前
FashionBoy应助加菲丰丰采纳,获得10
43秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291