Energy-Efficient and Low-Latency Massive SIMO Using Noncoherent ML Detection for Industrial IoT Communications

计算机科学 瑞利衰落 发射机 算法 编码增益 解码方法 星座图 衰退 拓扑(电路) 电信 数学 频道(广播) 误码率 组合数学
作者
Xiangchuan Gao,Jian‐Kang Zhang,He Chen,Zheng Dong,Branka Vucetic
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 6247-6261 被引量:45
标识
DOI:10.1109/jiot.2018.2878716
摘要

To enable ultrareliable low-latency wireless communications required in the Industrial Internet of Things, in this paper we develop an energy-based modulation [i.e., non-negative pulse amplitude modulation (PAM)] constellation design framework for noncoherent detection in massive single-input multiple-output (SIMO) systems. We consider that one single-antenna transmitter communicates to a receiver with a large number of antennas over a Rayleigh fading channel, and the receiver decodes the transmitted information at the end of every symbol. For such an SIMO system with non-negative PAM modulation, we first propose a fast noncoherent maximum-likelihood decoding algorithm and derive a closed-form expression of its symbol error probability (SEP). We then enhance the system energy efficiency by finding the optimal PAM constellation that minimizes the exact SEP subject to a total signal power constraint for such a system with an arbitrary number of receiver antennas, signal-to-noise ratio (SNR), and constellation size. Furthermore, the closed-form upper and lower bounds on the optimal SEP are derived. Based on these bounds, the exact expression for coding gain of the dominant term of the SEP is presented for such an optimal massive SIMO system. We also present an asymptotic SEP expression at a high SNR regime and the approximate diversity gain of the system. Simulation results for the proposed optimal PAM constellation validate the theoretical analysis, and show that our presented optimal constellation attains significant performance gains over the currently available minimum-distance-based constellation systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴拉巴拉发布了新的文献求助10
刚刚
蓑生完成签到 ,获得积分10
刚刚
tiantian发布了新的文献求助10
1秒前
tx应助龙在天涯采纳,获得10
1秒前
魯蛋发布了新的文献求助10
1秒前
鲨鱼完成签到,获得积分10
2秒前
QiangZi完成签到,获得积分10
3秒前
3秒前
su发布了新的文献求助10
4秒前
lingling发布了新的文献求助10
4秒前
4秒前
蓑生关注了科研通微信公众号
4秒前
zzw发布了新的文献求助10
4秒前
无花果应助平常雪柳采纳,获得10
5秒前
科研通AI2S应助平常雪柳采纳,获得10
5秒前
Ava应助平常雪柳采纳,获得10
5秒前
5秒前
搜集达人应助封听白采纳,获得10
5秒前
第六层窗完成签到 ,获得积分10
5秒前
5秒前
CC完成签到,获得积分10
5秒前
5秒前
Vizz完成签到,获得积分10
7秒前
老广完成签到 ,获得积分10
8秒前
8秒前
小蟹发布了新的文献求助10
8秒前
8秒前
积极热狗完成签到,获得积分10
9秒前
9秒前
wen发布了新的文献求助500
9秒前
10秒前
yang789发布了新的文献求助10
10秒前
魯蛋完成签到,获得积分10
10秒前
梁婷婷发布了新的文献求助10
11秒前
领导范儿应助tiantian采纳,获得10
11秒前
低空飞行发布了新的文献求助10
12秒前
13秒前
13秒前
我是老大应助顺心的莫茗采纳,获得10
14秒前
桐桐应助明亮飞双采纳,获得10
14秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206210
求助须知:如何正确求助?哪些是违规求助? 2855622
关于积分的说明 8100302
捐赠科研通 2520593
什么是DOI,文献DOI怎么找? 1353618
科研通“疑难数据库(出版商)”最低求助积分说明 641806
邀请新用户注册赠送积分活动 612874