糖尿病性视网膜病变
眼底(子宫)
人工智能
计算机科学
眼底摄影
黄斑变性
医学
深度学习
眼科
验光服务
失明
视网膜
糖尿病
荧光血管造影
内分泌学
作者
Zhaomin Yao,Yizhe Yuan,Zhenning Shi,Wenxin Mao,Gancheng Zhu,Guoxu Zhang,Zhiguo Wang
标识
DOI:10.3389/fphys.2022.961386
摘要
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are forms of degenerative retinal disorders that may result in vision impairment or even permanent blindness. Early detection of these conditions is essential to maintaining a patient's quality of life. The fundus photography technique is non-invasive, safe, and rapid way of assessing the function of the retina. It is widely used as a diagnostic tool for patients who suffer from fundus-related diseases. Using fundus images to analyze these two diseases is a challenging exercise, since there are rarely obvious features in the images during the incipient stages of the disease. In order to deal with these issues, we have proposed a deep learning method called FunSwin. The Swin Transformer constitutes the main framework for this method. Additionally, due to the characteristics of medical images, such as their small number and relatively fixed structure, transfer learning strategy that are able to increase the low-level characteristics of the model as well as data enhancement strategy to balance the data are integrated. Experiments have demonstrated that the proposed method outperforms other state-of-the-art approaches in both binary and multiclass classification tasks on the benchmark dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI