清脆的
Cas9
基因敲除
条件基因敲除
诱导多能干细胞
生物
基因组编辑
转基因
计算生物学
基因靶向
基因
核酸酶
遗传学
胚胎干细胞
表型
作者
Kirsten E. Snijders,James D. Cooper,Ludovic Vallier,Alessandro Bertero
出处
期刊:Methods in molecular biology
日期:2019-01-01
卷期号:: 185-209
被引量:4
标识
DOI:10.1007/978-1-4939-9170-9_12
摘要
The advent of the easily programmable and efficient CRISPR/Cas9 nuclease system has revolutionized genetic engineering. While conventional gene knockout experiments using CRISPR/Cas9 are very valuable, these are not well suited to study stage-specific gene function in dynamic situations such as development or disease. Here we describe a CRISPR/Cas9-based OPTimized inducible gene KnockOut method (OPTiKO) for conditional loss-of-function studies in human cells. This approach relies on an improved tetracycline-inducible system for conditional expression of single guide RNAs (sgRNAs) that drive Cas9 activity. In order to ensure homogeneous and stable expression, the necessary transgenes are expressed following rapid and efficient single-step genetic engineering of the AAVS1 genomic safe harbor. When implemented in human pluripotent stem cells (hPSCs), the approach can be then efficiently applied to virtually any hPSC-derived human cell type at various stages of development or disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI