小眼畸形相关转录因子
白癜风
黑色素
谷胱甘肽
氧化应激
活性氧
奶油
细胞生物学
化学
体内
生物化学
生物
酪氨酸酶
转录因子
免疫学
基因
遗传学
酶
作者
Qiong Ding,Lin Luo,Lan Yu,Silu Huang,Xiaoqin Wang,Bo Zhang
标识
DOI:10.1016/j.freeradbiomed.2021.09.017
摘要
Vitiligo is a depigmented disease featured as diagnosis simplicity and cure difficulty. Its occurrence and development are associated with a variety of factors, including oxidative stress, heredity and immunity, etc. Existing drugs for the treatment of vitiligo are to reduce the death of melanocytes and induce pigment accumulation as the main treatment strategy. Ermanin, a member of the flavonoids, is extracted from bee glue which is wildly used to treat vitiligo in traditional Chinese medicine. Therefore, this article discusses the relationship between melanogenesis and glutathione redox homeostasis by ermanin via biochemical and free radical approaches in vivo and in vitro. In this study, we found that ermanin effectively increased the melanin content at the in vivo model (zebrafish). Moreover, the melanin levels at the in vitro models (B16F10 cells and primary melanocytes) were also increased significantly accompanied with a shift of glutathione redox homeostasis towards oxidation. Ermanin also significantly enhanced the activity of tyrosinase. Meanwhile, ermanin increased the expression levels of TYR, TRP-1, and DCT genes, while ROS accumulation and glutathione depletion mediated the accumulation of pigments caused by ermanin, which increased the production of pigments and regulated the expression mRNA levels of TYR and DCT genes. From the perspective of pigment production regulation pathways, western blot showed that the pigment accumulation caused by ermanin was closely related to the CREB-MITF pathways, it activated CREB, TYR, TRP-1, and DCT proteins. The use of CREB specific inhibitor 666-15 and MITF inhibitor ML329 confirmed that the pigment accumulation caused by ermanin was positively correlated with CREB and MITF proteins. Our findings revealed the potential mechanisms by which ermanin promoted the production of melanin through activated CREB-MITF signaling pathway and glutathione redox homeostasis towards oxidation function as a signal are beneficial to melanin production and will help develop novel therapeutic approaches for vitiligo.
科研通智能强力驱动
Strongly Powered by AbleSci AI