光伏系统
可穿戴技术
可再生能源
可穿戴计算机
计算机科学
纳米技术
建筑工程
系统工程
工程类
材料科学
电气工程
嵌入式系统
作者
Huizhen Ke,Mengyuan Gao,Saimeng Li,Qingchun Qi,Wenchao Zhao,Xin Li,Sunsun Li,Vakhobjon Kuvondikov,Pengfei Lv,Qufu Wei,Long Ye
出处
期刊:Solar RRL
[Wiley]
日期:2023-05-11
卷期号:7 (15)
被引量:17
标识
DOI:10.1002/solr.202300109
摘要
Carbon neutrality is one of the most urgent global missions and has promoted the development of clean and renewable energy sources. Sustainable photovoltaic cells have become ideal candidates for green energy harvesting owing to their high power conversion efficiencies and low production costs, which can efficiently reduce the carbon emissions. In recent years, with the increasing advancements in wearable electronics, flexible photovoltaic textile devices have been regarded as the most promising energy resources for Internet of Things. Accordingly, herein, an up‐to‐date account of the recent advancements in modern textile‐based solar cells ( i.e. , organic, perovskite, and dye‐sensitized solar cells) based on both fibers and fabrics for highly effective harvesting of solar energy is provided, and their fundamental designs and optimization strategies are comprehensively reviewed. This review emphasizes the unique characteristics, underlying mechanisms and potential applications of textile‐based solar cells. Moreover, a modern perspective on both challenges and opportunities in the advancements of the interesting textile‐based solar cells embedded in wearable devices is elucidated. This review offers new insights into advanced energy technologies and smart wearable devices that would facilitate multidisciplinary integration of basic science, device engineering, industrial applications, and other scientific domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI