Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited

切比雪夫多项式 切比雪夫滤波器 切比雪夫节点 近似理论 图形 数学 计算机科学 算法 离散数学 数学分析
作者
Mingguo He,Zhewei Wei,Ji-Rong Wen
出处
期刊:Cornell University - arXiv 被引量:17
标识
DOI:10.48550/arxiv.2202.03580
摘要

Designing spectral convolutional networks is a challenging problem in graph learning. ChebNet, one of the early attempts, approximates the spectral graph convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing only the first two Chebyshev polynomials while still outperforming it on real-world datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein bases also outperform the Chebyshev basis in terms of learning the spectral graph convolutions. Such conclusions are counter-intuitive in the field of approximation theory, where it is established that the Chebyshev polynomial achieves the optimum convergent rate for approximating a function. In this paper, we revisit the problem of approximating the spectral graph convolutions with Chebyshev polynomials. We show that ChebNet's inferior performance is primarily due to illegal coefficients learnt by ChebNet approximating analytic filter functions, which leads to over-fitting. We then propose ChebNetII, a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev polynomial approximation while reducing the Runge phenomenon. We conducted an extensive experimental study to demonstrate that ChebNetII can learn arbitrary graph convolutions and achieve superior performance in both full- and semi-supervised node classification tasks. Most notably, we scale ChebNetII to a billion graph ogbn-papers100M, showing that spectral-based GNNs have superior performance. Our code is available at https://github.com/ivam-he/ChebNetII.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zengyan发布了新的文献求助10
刚刚
刚刚
刚刚
烟花应助ruby采纳,获得10
1秒前
2秒前
Owen应助Zh采纳,获得10
3秒前
3秒前
传奇3应助ljs采纳,获得10
3秒前
4秒前
qqm关注了科研通微信公众号
4秒前
wwz应助zz采纳,获得10
4秒前
cff完成签到,获得积分10
5秒前
5秒前
Hoooo...发布了新的文献求助10
6秒前
6秒前
7秒前
完美世界应助着急的谷芹采纳,获得10
7秒前
汉堡包应助楚楚楚采纳,获得10
7秒前
8秒前
8秒前
8秒前
黄浦江发布了新的文献求助10
9秒前
9秒前
初心完成签到,获得积分10
10秒前
10秒前
李爱国应助我想查文献采纳,获得10
10秒前
阿杜阿杜完成签到,获得积分20
10秒前
bobby仔发布了新的文献求助10
11秒前
萧诗双发布了新的文献求助10
11秒前
11秒前
zy完成签到,获得积分10
11秒前
上官若男应助young采纳,获得10
12秒前
ZZY发布了新的文献求助10
12秒前
小米稀饭完成签到,获得积分10
12秒前
传奇3应助Hoooo...采纳,获得10
13秒前
科研通AI2S应助歌于心采纳,获得10
13秒前
吴正言发布了新的文献求助10
14秒前
qian72133发布了新的文献求助30
14秒前
yu发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866