An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings

精确性和召回率 温室 人工智能 帧速率 计算机视觉 计算机科学 数学 模式识别(心理学) 园艺 生物
作者
Yifan Bai,Junzhen Yu,Shuqin Yang,Jifeng Ning
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:237: 1-12 被引量:17
标识
DOI:10.1016/j.biosystemseng.2023.11.008
摘要

Accurately identifying the flowers and fruits of strawberry seedlings in the greenhouse is the key to automated flower and fruit thinning, which can improve efficiency and reduce labour costs in the cultivation. To address the challenges resulting from the small size, similar colour, and overlapping occlusion of strawberry seedling flowers and fruits, this paper proposes a real-time recognition algorithm (Improved YOLO) for accurately identifying them. Firstly, a Swin Transformer prediction head on the high-resolution feature map of YOLO v7 was constructed to better utilise spatial location information to enhance the detection of small target flowers and fruits, and improve the model's spatial interaction and feature extraction ability in scenes with similar colours and overlapping occlusions. Secondly, the GS-ELAN Optimisation Module for neck of network by GSConv was constructed to suppress shallow noise interference from the high-resolution prediction head and mitigate the increase of parameters resulting from high-resolution prediction heads. The experimental results showed that the Precision(P), Recall(R), and mean Average Precision (mAP) of Improved YOLO are 92.6%, 89.6%, and 92.1%. In the meantime, the Improved YOLO algorithm achieves a frame rate of 45 f/s, satisfying the real-time detection requirements. It is 3.2%, 2.7%, and 4.6% higher than the precision, recall, and mAP of YOLOv7, respectively. The accuracy of this model for detecting flowers and fruits was 93.9% and 91.3%, the recall was 93% and 86.3%, and the average precision was 94.7% and 89.5%, respectively. The Improved YOLO algorithm has a high level of robustness and real-time detection performance, allowing it to quickly and accurately identify the flowers and fruits of strawberry seedlings and provides effective support for the automated management of flower and fruit thinning of strawberry seedlings in greenhouse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助wang采纳,获得10
1秒前
2秒前
呵呵发布了新的文献求助10
3秒前
3秒前
Christ发布了新的文献求助10
3秒前
quhayley发布了新的文献求助10
3秒前
爆米花应助frank采纳,获得10
4秒前
5秒前
马婷婷完成签到,获得积分10
5秒前
笑颜完成签到,获得积分20
5秒前
星辰大海应助cxt1346采纳,获得10
6秒前
6秒前
6秒前
宗嘻嘻发布了新的文献求助10
7秒前
7秒前
8秒前
呼叫554完成签到,获得积分10
8秒前
晶晶发布了新的文献求助10
9秒前
Han发布了新的文献求助10
9秒前
9秒前
hanyang965发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
perchasing完成签到,获得积分10
13秒前
呼叫554发布了新的文献求助10
14秒前
大模型应助Christ采纳,获得10
14秒前
长生发布了新的文献求助10
14秒前
ckl关闭了ckl文献求助
16秒前
丘比特应助光亮的太阳采纳,获得10
16秒前
Mmm1x发布了新的文献求助10
16秒前
WQ发布了新的文献求助10
17秒前
科研通AI2S应助aaaaarfv采纳,获得10
18秒前
乐乐应助忐忑的邑采纳,获得10
18秒前
MMM发布了新的文献求助10
18秒前
你好晚安应助科学家采纳,获得10
18秒前
ljl86400完成签到,获得积分10
18秒前
18秒前
emchavezangel应助LmaPN7采纳,获得20
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309117
求助须知:如何正确求助?哪些是违规求助? 2942485
关于积分的说明 8509235
捐赠科研通 2617584
什么是DOI,文献DOI怎么找? 1430190
科研通“疑难数据库(出版商)”最低求助积分说明 664086
邀请新用户注册赠送积分活动 649251